@article{PieperKlein2012, author = {Pieper, Martin and Klein, Peter}, title = {Application of simple, periodic homogenization techniques to non-linear heat conduction problems in non-periodic, porous media}, series = {Heat mass transfer}, volume = {48}, journal = {Heat mass transfer}, number = {2}, publisher = {Springer}, address = {Berlin}, issn = {0947-7411}, doi = {10.1007/s00231-011-0879-4}, pages = {291 -- 300}, year = {2012}, abstract = {Often, detailed simulations of heat conduction in complicated, porous media have large runtimes. Then homogenization is a powerful tool to speed up the calculations by preserving accurate solutions at the same time. Unfortunately real structures are generally non-periodic, which requires unpractical, complicated homogenization techniques. We demonstrate in this paper, that the application of simple, periodic techniques to realistic media, that are just close to periodic, gives accurate, approximative solutions. In order to obtain effective parameters for the homogenized heat equation, we have to solve a so called "cell problem". In contrast to periodic structures it is not trivial to determine a suitable unit cell, which represents a non-periodic media. To overcome this problem, we give a rule of thumb on how to choose a good cell. Finally we demonstrate the efficiency of our method for virtually generated foams as well as real foams and compare these results to periodic structures.}, language = {en} } @article{PieperKlein2010, author = {Pieper, Martin and Klein, Peter}, title = {Numerical solution of the heat equation with non-linear, time derivative-dependent source term}, series = {International Journal for Numerical Methods in Engineering}, volume = {84}, journal = {International Journal for Numerical Methods in Engineering}, number = {10}, publisher = {Wiley}, address = {Chichester}, issn = {0029-5981}, doi = {10.1002/nme.2937}, pages = {1205 -- 1221}, year = {2010}, abstract = {The mathematical modeling of heat conduction with adsorption effects in coated metal structures yields the heat equation with piecewise smooth coefficients and a new kind of source term. This term is special, because it is non-linear and furthermore depends on a time derivative. In our approach we reformulated this as a new problem for the usual heat equation, without source term but with a new non-linear coefficient. We gave an existence and uniqueness proof for the weak solution of the reformulated problem. To obtain a numerical solution, we developed a semi-implicit and a fully implicit finite volume method. We compared these two methods theoretically as well as numerically. Finally, as practical application, we simulated the heat conduction in coated aluminum fibers with adsorption in the zeolite coating. Copyright © 2010 John Wiley \& Sons, Ltd.}, language = {en} } @article{Pieper2008, author = {Pieper, Martin}, title = {Nonlinear integral equations for an inverse electromagnetic scattering problem}, series = {Journal of Physics Conference Series. 124 (2008)}, journal = {Journal of Physics Conference Series. 124 (2008)}, isbn = {1742-6596}, year = {2008}, language = {en} } @article{PieperIvanyshyn2008, author = {Pieper, Martin and Ivanyshyn, Olha}, title = {Nonlinear integral equations for a 3D inverse acoustic scattering problem : abstract / O. Ivanyshyn and M. Pieper}, year = {2008}, language = {en} } @article{EweKleinPieperetal.2009, author = {Ewe, Hendrik and Klein, Peter and Pieper, Martin and F{\"u}ldner, G.}, title = {Heat conductivity in sintered aluminium fibers}, series = {Cellular metals for structural and functional applications : CELLMET 2008 ; proceedings of the International Symposium on Cellular Metals for Structural and Functional Applications held October 8 - 10, 2008 in Dresden, Germany / ed. by G{\"u}nter Stephani}, journal = {Cellular metals for structural and functional applications : CELLMET 2008 ; proceedings of the International Symposium on Cellular Metals for Structural and Functional Applications held October 8 - 10, 2008 in Dresden, Germany / ed. by G{\"u}nter Stephani}, publisher = {Fraunhofer IFAM}, address = {Dresden}, pages = {187 -- 193}, year = {2009}, language = {en} } @article{Pieper2011, author = {Pieper, Martin}, title = {Multiobjective optimization with expensive objectives applied to a thermodynamic material design problem}, series = {Proceedings in applied mathematics and mechanics : PAMM. 11 (2011), H. 1}, journal = {Proceedings in applied mathematics and mechanics : PAMM. 11 (2011), H. 1}, publisher = {Wiley}, address = {Weinheim}, isbn = {1617-7061}, pages = {733 -- 734}, year = {2011}, language = {en} } @article{FateriHoetterGebhardt2012, author = {Fateri, Miranda and H{\"o}tter, Jan-Steffen and Gebhardt, Andreas}, title = {Experimental and Theoretical Investigation of Buckling Deformation of Fabricated Objects by Selective Laser Melting}, series = {Physics Procedia}, volume = {39}, journal = {Physics Procedia}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1875-3892}, doi = {10.1016/j.phpro.2012.10.062}, pages = {464 -- 470}, year = {2012}, abstract = {Although Selective Laser Melting (SLM) process is an innovative manufacturing method, there are challenges such as inferior mechanical properties of fabricated objects. Regarding this, buckling deformation which is caused by thermal stress is one of the undesired mechanical properties which must be alleviated. As buckling deformation is more observable in hard to process materials, silver is selected to be studied theoretically and experimentally for this paper. Different scanning strategies are utilized and a Finite Element Method (FEM) is applied to calculate the temperature gradient in order to determine its effect on the buckling deformation of the objects from experiments.}, language = {en} } @article{WernerTakenagaTakietal.2013, author = {Werner, Frederik and Takenaga, Shoko and Taki, Hidenori and Sawada, Kazuaki and Sch{\"o}ning, Michael Josef}, title = {Comparison of label-free ACh-imaging sensors based on CCD and LAPS}, series = {Sensors and Actuators B: Chemical (2012)}, volume = {177}, journal = {Sensors and Actuators B: Chemical (2012)}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0925-4005}, pages = {745 -- 752}, year = {2013}, abstract = {Semiconductor-based chemical imaging sensors, like the light-addressable potentiometric sensor (LAPS) or the pH-imaging sensor based on a charge-coupled device (CCD), are becoming a powerful tool for label-free imaging of biological phenomena. We have proposed a polyion-based enzymatic membrane to develop an acetylcholine (ACh) imaging sensor for neural cell-activity observations. In this study, a CCD-type ACh-imaging sensor and a LAPS-type ACh-imaging sensor were fabricated and the prospect of both sensors was clarified by making a comparison of their basic characteristics.}, language = {en} } @book{WosnitzaHilgers2012, author = {Wosnitza, Franz and Hilgers, Hans Gerd}, title = {Energieeffizienz und Energiemanagement : ein {\"U}berblick heutiger M{\"o}glichkeiten und Notwendigkeiten}, publisher = {Springer Spektrum}, address = {Wiesbaden}, isbn = {978-3-8348-1941-3}, pages = {XVII, 548 S. : Ill., graph. Darst.}, year = {2012}, language = {en} } @book{JanserHavermann2012, author = {Janser, Frank and Havermann, Marc}, title = {Inkompressible Str{\"o}mungen}, publisher = {Mainz}, address = {Aachen}, isbn = {978-3-86130-446-3}, pages = {189 S. : Ill., graph. Darst.}, year = {2012}, language = {en} }