@article{MuellerLeiseLorenzetal.2020, author = {M{\"u}ller, Tim M. and Leise, Philipp and Lorenz, Imke-Sophie and Altherr, Lena and Pelz, Peter F.}, title = {Optimization and validation of pumping system design and operation for water supply in high-rise buildings}, series = {Optimization and Engineering}, volume = {2021}, journal = {Optimization and Engineering}, number = {22}, publisher = {Springer}, issn = {1573-2924}, doi = {10.1007/s11081-020-09553-4}, pages = {643 -- 686}, year = {2020}, abstract = {The application of mathematical optimization methods for water supply system design and operation provides the capacity to increase the energy efficiency and to lower the investment costs considerably. We present a system approach for the optimal design and operation of pumping systems in real-world high-rise buildings that is based on the usage of mixed-integer nonlinear and mixed-integer linear modeling approaches. In addition, we consider different booster station topologies, i.e. parallel and series-parallel central booster stations as well as decentral booster stations. To confirm the validity of the underlying optimization models with real-world system behavior, we additionally present validation results based on experiments conducted on a modularly constructed pumping test rig. Within the models we consider layout and control decisions for different load scenarios, leading to a Deterministic Equivalent of a two-stage stochastic optimization program. We use a piecewise linearization as well as a piecewise relaxation of the pumps' characteristics to derive mixed-integer linear models. Besides the solution with off-the-shelf solvers, we present a problem specific exact solving algorithm to improve the computation time. Focusing on the efficient exploration of the solution space, we divide the problem into smaller subproblems, which partly can be cut off in the solution process. Furthermore, we discuss the performance and applicability of the solution approaches for real buildings and analyze the technical aspects of the solutions from an engineer's point of view, keeping in mind the economically important trade-off between investment and operation costs.}, language = {en} } @article{NobisSchmittSchemmetal.2020, author = {Nobis, Moritz and Schmitt, Carlo and Schemm, Ralf and Schnettler, Armin}, title = {Pan-European CVAR-constrained stochastic unit commitment in day-ahead and intraday electricity markets}, series = {Energies}, volume = {13}, journal = {Energies}, number = {Art. 2339}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en13092339}, pages = {1 -- 35}, year = {2020}, abstract = {The fundamental modeling of energy systems through individual unit commitment decisions is crucial for energy system planning. However, current large-scale models are not capable of including uncertainties or even risk-averse behavior arising from forecasting errors of variable renewable energies. However, risks associated with uncertain forecasting errors have become increasingly relevant within the process of decarbonization. The intraday market serves to compensate for these forecasting errors. Thus, the uncertainty of forecasting errors results in uncertain intraday prices and quantities. Therefore, this paper proposes a two-stage risk-constrained stochastic optimization approach to fundamentally model unit commitment decisions facing an uncertain intraday market. By the nesting of Lagrangian relaxation and an extended Benders decomposition, this model can be applied to large-scale, e.g., pan-European, power systems. The approach is applied to scenarios for 2023—considering a full nuclear phase-out in Germany—and 2035—considering a full coal phase-out in Germany. First, the influence of the risk factors is evaluated. Furthermore, an evaluation of the market prices shows an increase in price levels as well as an increasing day-ahead-intraday spread in 2023 and in 2035. Finally, it is shown that intraday cross-border trading has a significant influence on trading volumes and prices and ensures a more efficient allocation of resources.}, language = {en} } @article{OrzadaFiedlerBitzetal.2020, author = {Orzada, Stephan and Fiedler, Thomas M. and Bitz, Andreas and Ladd, Mark E. and Quick, Harald H.}, title = {Local SAR compression with overestimation control to reduce maximum relative SAR overestimation and improve multi-channel RF array performance}, series = {Magnetic Resonance Materials in Physics, Biology and Medicine}, journal = {Magnetic Resonance Materials in Physics, Biology and Medicine}, number = {34 (2021)}, publisher = {Springer}, address = {Heidelberg}, isbn = {1352-8661}, doi = {10.1007/s10334-020-00890-0}, pages = {153 -- 164}, year = {2020}, abstract = {Objective In local SAR compression algorithms, the overestimation is generally not linearly dependent on actual local SAR. This can lead to large relative overestimation at low actual SAR values, unnecessarily constraining transmit array performance. Method Two strategies are proposed to reduce maximum relative overestimation for a given number of VOPs. The first strategy uses an overestimation matrix that roughly approximates actual local SAR; the second strategy uses a small set of pre-calculated VOPs as the overestimation term for the compression. Result Comparison with a previous method shows that for a given maximum relative overestimation the number of VOPs can be reduced by around 20\% at the cost of a higher absolute overestimation at high actual local SAR values. Conclusion The proposed strategies outperform a previously published strategy and can improve the SAR compression where maximum relative overestimation constrains the performance of parallel transmission.}, language = {en} } @inproceedings{PaulsenHoffstadtKrafftetal.2020, author = {Paulsen, Svea and Hoffstadt, Kevin and Krafft, Simone and Leite, A. and Zang, J. and Fonseca-Zang, W. and Kuperjans, Isabel}, title = {Continuous biogas production from sugarcane as sole substrate}, series = {Energy Reports}, volume = {6}, booktitle = {Energy Reports}, number = {Supplement 1}, publisher = {Elsevier}, doi = {10.1016/j.egyr.2019.08.035}, pages = {153 -- 158}, year = {2020}, abstract = {A German-Brazilian research project investigates sugarcane as an energy plant in anaerobic digestion for biogas production. The aim of the project is a continuous, efficient, and stable biogas process with sugarcane as the substrate. Tests are carried out in a fermenter with a volume of 10 l. In order to optimize the space-time load to achieve a stable process, a continuous process in laboratory scale has been devised. The daily feed in quantity and the harvest time of the substrate sugarcane has been varied. Analyses of the digester content were conducted twice per week to monitor the process: The ratio of inorganic carbon content to volatile organic acid content (VFA/TAC), the concentration of short-chain fatty acids, the organic dry matter, the pH value, and the total nitrogen, phosphate, and ammonium concentrations were monitored. In addition, the gas quality (the percentages of CO₂, CH₄, and H₂) and the quantity of the produced gas were analyzed. The investigations have exhibited feasible and economical production of biogas in a continuous process with energy cane as substrate. With a daily feeding rate of 1.68gᵥₛ/l*d the average specific gas formation rate was 0.5 m3/kgᵥₛ. The long-term study demonstrates a surprisingly fast metabolism of short-chain fatty acids. This indicates a stable and less susceptible process compared to other substrates.}, language = {en} } @inproceedings{PhilippBrillowskiDammersetal.2020, author = {Philipp, Brauner and Brillowski, Florian Sascha and Dammers, Hannah and K{\"o}nigs, Peter and Kordtomeikel, Frauke Carole and Petruck, Henning and Schaar, Anne Kathrin and Schmitz, Seth and Steuer-Dankert, Linda and Mertens, Alexander and Gries, Thomas and Leicht-Scholten, Carmen and Nagel, Saskia K. and Nitsch, Verena and Schuh, G{\"u}nther and Ziefle, Martina}, title = {A research framework for human aspects in the internet of production: an intra-company perspective}, series = {Proceedings of the AHFE 2020}, booktitle = {Proceedings of the AHFE 2020}, editor = {Mrugalska, Beata and Trzcielinski, Stefan and Karwowski, Waldemar and Nicolantonio, Massimo Di and Roossi, Emilio}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-51980-3}, doi = {10.1007/978-3-030-51981-0_1}, pages = {3 -- 17}, year = {2020}, abstract = {Digitalization in the production sector aims at transferring concepts and methods from the Internet of Things (IoT) to the industry and is, as a result, currently reshaping the production area. Besides technological progress, changes in work processes and organization are relevant for a successful implementation of the "Internet of Production" (IoP). Focusing on the labor organization and organizational procedures emphasizes to consider intra-company factors such as (user) acceptance, ethical issues, and ergonomics in the context of IoP approaches. In the scope of this paper, a research approach is presented that considers these aspects from an intra-company perspective by conducting studies on the shop floor, control level and management level of companies in the production area. Focused on four central dimensions—governance, organization, capabilities, and interfaces—this contribution presents a research framework that is focused on a systematic integration and consideration of human aspects in the realization of the IoP.}, language = {en} } @article{PoghossianJablonskiMolinnusetal.2020, author = {Poghossian, Arshak and Jablonski, Melanie and Molinnus, Denise and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Field-Effect Sensors for Virus Detection: From Ebola to SARS-CoV-2 and Plant Viral Enhancers}, series = {Frontiers in Plant Science}, volume = {11}, journal = {Frontiers in Plant Science}, number = {Article 598103}, publisher = {Frontiers}, address = {Lausanne}, doi = {10.3389/fpls.2020.598103}, pages = {1 -- 14}, year = {2020}, abstract = {Coronavirus disease 2019 (COVID-19) is a novel human infectious disease provoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, no specific vaccines or drugs against COVID-19 are available. Therefore, early diagnosis and treatment are essential in order to slow the virus spread and to contain the disease outbreak. Hence, new diagnostic tests and devices for virus detection in clinical samples that are faster, more accurate and reliable, easier and cost-efficient than existing ones are needed. Due to the small sizes, fast response time, label-free operation without the need for expensive and time-consuming labeling steps, the possibility of real-time and multiplexed measurements, robustness and portability (point-of-care and on-site testing), biosensors based on semiconductor field-effect devices (FEDs) are one of the most attractive platforms for an electrical detection of charged biomolecules and bioparticles by their intrinsic charge. In this review, recent advances and key developments in the field of label-free detection of viruses (including plant viruses) with various types of FEDs are presented. In recent years, however, certain plant viruses have also attracted additional interest for biosensor layouts: Their repetitive protein subunits arranged at nanometric spacing can be employed for coupling functional molecules. If used as adapters on sensor chip surfaces, they allow an efficient immobilization of analyte-specific recognition and detector elements such as antibodies and enzymes at highest surface densities. The display on plant viral bionanoparticles may also lead to long-time stabilization of sensor molecules upon repeated uses and has the potential to increase sensor performance substantially, compared to conventional layouts. This has been demonstrated in different proof-of-concept biosensor devices. Therefore, richly available plant viral particles, non-pathogenic for animals or humans, might gain novel importance if applied in receptor layers of FEDs. These perspectives are explained and discussed with regard to future detection strategies for COVID-19 and related viral diseases.}, language = {en} } @article{PoghossianSchoening2020, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Capacitive field-effect eis chemical sensors and biosensors: A status report}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s20195639}, pages = {Artikel 5639}, year = {2020}, abstract = {Electrolyte-insulator-semiconductor (EIS) field-effect sensors belong to a new generation of electronic chips for biochemical sensing, enabling a direct electronic readout. The review gives an overview on recent advances and current trends in the research and development of chemical sensors and biosensors based on the capacitive field-effect EIS structure—the simplest field-effect device, which represents a biochemically sensitive capacitor. Fundamental concepts, physicochemical phenomena underlying the transduction mechanism and application of capacitive EIS sensors for the detection of pH, ion concentrations, and enzymatic reactions, as well as the label-free detection of charged molecules (nucleic acids, proteins, and polyelectrolytes) and nanoparticles, are presented and discussed.}, language = {en} } @article{PogorelovaRogachevDigeletal.2020, author = {Pogorelova, Natalia and Rogachev, Evgeniy and Digel, Ilya and Chernigova, Svetlana and Nardin, Dmitry}, title = {Bacterial Cellulose Nanocomposites: Morphology and Mechanical Properties}, series = {Materials}, volume = {13}, journal = {Materials}, number = {12}, publisher = {MDPI}, address = {Basel}, isbn = {1996-1944}, doi = {10.3390/ma13122849}, pages = {1 -- 16}, year = {2020}, abstract = {Bacterial cellulose (BC) is a promising material for biomedical applications due to its unique properties such as high mechanical strength and biocompatibility. This article describes the microbiological synthesis, modification, and characterization of the obtained BC-nanocomposites originating from symbiotic consortium Medusomyces gisevii. Two BC-modifications have been obtained: BC-Ag and BC-calcium phosphate (BC-Ca3(PO4)2). Structure and physicochemical properties of the BC and its modifications were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and infrared Fourier spectroscopy as well as by measurements of mechanical and water holding/absorbing capacities. Topographic analysis of the surface revealed multicomponent thick fibrils (150-160 nm in diameter and about 15 µm in length) constituted by 50-60 nm nanofibrils weaved into a left-hand helix. Distinctive features of Ca-phosphate-modified BC samples were (a) the presence of 500-700 nm entanglements and (b) inclusions of Ca3(PO4)2 crystals. The samples impregnated with Ag nanoparticles exhibited numerous roundish inclusions, about 110 nm in diameter. The boundaries between the organic and inorganic phases were very distinct in both cases. The Ag-modified samples also showed a prominent waving pattern in the packing of nanofibrils. The obtained BC gel films possessed water-holding capacity of about 62.35 g/g. However, the dried (to a constant mass) BC-films later exhibited a low water absorption capacity (3.82 g/g). It was found that decellularized BC samples had 2.4 times larger Young's modulus and 2.2 times greater tensile strength as compared to dehydrated native BC films. We presume that this was caused by molecular compaction of the BC structure.}, language = {en} } @inproceedings{PohleFroehlichDalitzRichteretal.2020, author = {Pohle-Fr{\"o}hlich, Regina and Dalitz, Christoph and Richter, Charlotte and Hahnen, Tobias and St{\"a}udle, Benjamin and Albracht, Kirsten}, title = {Estimation of muscle fascicle orientation in ultrasonic images}, series = {Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5}, booktitle = {Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5}, publisher = {SciTePress}, address = {Set{\´u}bal, Portugal}, isbn = {978-989-758-402-2}, doi = {10.5220/0008933900790086}, pages = {79 -- 86}, year = {2020}, abstract = {We compare four different algorithms for automatically estimating the muscle fascicle angle from ultrasonic images: the vesselness filter, the Radon transform, the projection profile method and the gray level cooccurence matrix (GLCM). The algorithm results are compared to ground truth data generated by three different experts on 425 image frames from two videos recorded during different types of motion. The best agreement with the ground truth data was achieved by a combination of pre-processing with a vesselness filter and measuring the angle with the projection profile method. The robustness of the estimation is increased by applying the algorithms to subregions with high gradients and performing a LOESS fit through these estimates.}, language = {en} } @article{QuittmannAbelAlbrachtetal.2020, author = {Quittmann, Oliver J. and Abel, Thomas and Albracht, Kirsten and Meskemper, Joshua and Foitschik, Tina and Str{\"u}der, Heiko K.}, title = {Biomechanics of handcycling propulsion in a 30-min continuous load test at lactate threshold: Kinetics, kinematics, and muscular activity in able-bodied participants}, series = {European Journal of Applied Physiology}, journal = {European Journal of Applied Physiology}, number = {120}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-6327}, doi = {10.1007/s00421-020-04373-x}, pages = {1403 -- 1415}, year = {2020}, abstract = {Purpose This study aims to investigate the biomechanics of handcycling during a continuous load trial (CLT) to assess the mechanisms underlying fatigue in upper body exercise. Methods Twelve able-bodied triathletes performed a 30-min CLT at a power output corresponding to lactate threshold in a racing recumbent handcycle mounted on a stationary ergometer. During the CLT, ratings of perceived exertion (RPE), tangential crank kinetics, 3D joint kinematics, and muscular activity of ten muscles of the upper extremity and trunk were examined using motion capturing and surface electromyography. Results During the CLT, spontaneously chosen cadence and RPE increased, whereas crank torque decreased. Rotational work was higher during the pull phase. Peripheral RPE was higher compared to central RPE. Joint range of motion decreased for elbow-flexion and radial-duction. Integrated EMG (iEMG) increased in the forearm flexors, forearm extensors, and M. deltoideus (Pars spinalis). An earlier onset of activation was found for M. deltoideus (Pars clavicularis), M. pectoralis major, M. rectus abdominis, M. biceps brachii, and the forearm flexors. Conclusion Fatigue-related alterations seem to apply analogously in handcycling and cycling. The most distal muscles are responsible for force transmission on the cranks and might thus suffer most from neuromuscular fatigue. The findings indicate that peripheral fatigue (at similar lactate values) is higher in handcycling compared to leg cycling, at least for inexperienced participants. An increase in cadence might delay peripheral fatigue by a reduced vascular occlusion. We assume that the gap between peripheral and central fatigue can be reduced by sport-specific endurance training.}, language = {en} }