@article{BeckerDelfmannEggertetal.2012, author = {Becker, J{\"o}rg and Delfmann, Patrick and Eggert, Mathias and Schwittay, Sebastian}, title = {Generalizability and Applicability of Model-Based Business Process Compliance-Checking Approaches — A State-of-the-Art Analysis and Research Roadmap}, series = {Business Research : BuR}, volume = {5}, journal = {Business Research : BuR}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {1866-8658}, doi = {10.1007/BF03342739}, pages = {221 -- 247}, year = {2012}, abstract = {With a steady increase of regulatory requirements for business processes, automation support of compliance management is a field garnering increasing attention in Information Systems research. Several approaches have been developed to support compliance checking of process models. One major challenge for such approaches is their ability to handle different modeling techniques and compliance rules in order to enable widespread adoption and application. Applying a structured literature search strategy, we reflect and discuss compliance-checking approaches in order to provide an insight into their generalizability and evaluation. The results imply that current approaches mainly focus on special modeling techniques and/or a restricted set of types of compliance rules. Most approaches abstain from real-world evaluation which raises the question of their practical applicability. Referring to the search results, we propose a roadmap for further research in model-based business process compliance checking.}, language = {en} } @article{Weigand2000, author = {Weigand, Christoph}, title = {Economically Optimal Adaptive Inspection Policies}, series = {Economic Quality Control. 15 (2000), H. 1/2}, journal = {Economic Quality Control. 15 (2000), H. 1/2}, isbn = {0940-5151}, pages = {55 -- 77}, year = {2000}, language = {en} } @article{Weigand1993, author = {Weigand, Christoph}, title = {On the Effects of SPC on Production Time}, series = {Economic Quality Control. 8 (1993)}, journal = {Economic Quality Control. 8 (1993)}, isbn = {0940-5151}, pages = {23 -- 61}, year = {1993}, language = {en} } @inproceedings{BeckerEggertSaatetal.2013, author = {Becker, J{\"o}rg and Eggert, Mathias and Saat, Jan and Dirding, Philipp}, title = {The Influence of Regulation on Data Warehouse Engineering - Investigating an IT Consulting Case in the Financial Service Industry}, series = {Proceedings of the Nineteenth Americas Conference on Information Systems, Chicago, Illinois, August 15-17, 2013.}, booktitle = {Proceedings of the Nineteenth Americas Conference on Information Systems, Chicago, Illinois, August 15-17, 2013.}, pages = {1 -- 8}, year = {2013}, language = {en} } @inproceedings{ButenwegGajewskiThierauf1999, author = {Butenweg, Christoph and Gajewski, R. and Thierauf, Georg}, title = {A practical approach for the optimum design of reinforced concrete structures}, series = {Developments in computational mechanics with high performance computing : [papers presented at the Third Euro-Conference on Parallel and Distributed Computing for Computational Mechanics, held in Weimar, Germany between 20 - 25 March 1999] / ed. by B. H. V. Topping}, booktitle = {Developments in computational mechanics with high performance computing : [papers presented at the Third Euro-Conference on Parallel and Distributed Computing for Computational Mechanics, held in Weimar, Germany between 20 - 25 March 1999] / ed. by B. H. V. Topping}, publisher = {Civil-Comp Press}, address = {Edinburgh}, organization = {Euro-Conference on Parallel and Distributed Computing for Computational Mechanics <3, 1999, Weimar>}, isbn = {0-94-8749-59-8}, pages = {245 -- 250}, year = {1999}, language = {en} } @article{SaretzkiBergmannDahmannetal.2021, author = {Saretzki, Charlotte and Bergmann, Ole and Dahmann, Peter and Janser, Frank and Keimer, Jona and Machado, Patricia and Morrison, Audry and Page, Henry and Pluta, Emil and St{\"u}bing, Felix and K{\"u}pper, Thomas}, title = {Are small airplanes safe with regards to COVID-19 transmission?}, series = {Journal of Travel Medicine}, volume = {28}, journal = {Journal of Travel Medicine}, number = {7}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1708-8305}, doi = {10.1093/jtm/taab105}, year = {2021}, language = {en} } @techreport{BerneckerBoyerGathmann2018, type = {Working Paper}, author = {Bernecker, Andreas and Boyer, Pierre and Gathmann, Christina}, title = {The Role of Electoral Incentives for Policy Innovation: Evidence from the US Welfare Reform}, series = {CESifo Working Paper}, journal = {CESifo Working Paper}, number = {No. 6964}, organization = {CESifo Group Munich}, issn = {ISSN 2364-1428 (electronic version)}, pages = {60}, year = {2018}, language = {en} } @article{FredebeulKreinSteingroever2014, author = {Fredebeul-Krein, Markus and Steingr{\"o}ver, Markus}, title = {Wholesale broadband access to IPTV in an NGA environment : how to deal with it from a regulatory perspective?}, series = {Telecommunications Policy}, volume = {38}, journal = {Telecommunications Policy}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0308-5961 (Print)}, doi = {doi:10.1016/j.telpol.2013.04.002}, pages = {264 -- 277}, year = {2014}, language = {en} } @article{DrummEmhardtKoketal.2020, author = {Drumm, Christian and Emhardt, Selina N. and Kok, Ellen M. and Jarodzka, Halzka and Brand-Gruwel, Saskia and van Gog, Tamara}, title = {How Experts Adapt Their Gaze Behavior When Modeling a Task to Novices}, series = {Cognitive science}, volume = {44}, journal = {Cognitive science}, number = {9}, publisher = {Wiley}, address = {Weinheim}, issn = {1551-6709}, doi = {10.1111/cogs.12893}, pages = {26}, year = {2020}, abstract = {Domain experts regularly teach novice students how to perform a task. This often requires them to adjust their behavior to the less knowledgeable audience and, hence, to behave in a more didactic manner. Eye movement modeling examples (EMMEs) are a contemporary educational tool for displaying experts' (natural or didactic) problem-solving behavior as well as their eye movements to learners. While research on expert-novice communication mainly focused on experts' changes in explicit, verbal communication behavior, it is as yet unclear whether and how exactly experts adjust their nonverbal behavior. This study first investigated whether and how experts change their eye movements and mouse clicks (that are displayed in EMMEs) when they perform a task naturally versus teach a task didactically. Programming experts and novices initially debugged short computer codes in a natural manner. We first characterized experts' natural problem-solving behavior by contrasting it with that of novices. Then, we explored the changes in experts' behavior when being subsequently instructed to model their task solution didactically. Experts became more similar to novices on measures associated with experts' automatized processes (i.e., shorter fixation durations, fewer transitions between code and output per click on the run button when behaving didactically). This adaptation might make it easier for novices to follow or imitate the expert behavior. In contrast, experts became less similar to novices for measures associated with more strategic behavior (i.e., code reading linearity, clicks on run button) when behaving didactically.}, language = {en} } @article{MuellerSeginWeigandetal.2022, author = {Mueller, Tobias and Segin, Alexander and Weigand, Christoph and Schmitt, Robert H.}, title = {Feature selection for measurement models}, series = {International journal of quality \& reliability management}, journal = {International journal of quality \& reliability management}, number = {Vol. ahead-of-print, No. ahead-of-print.}, publisher = {Emerald Group Publishing Limited}, address = {Bingley}, issn = {0265-671X}, doi = {10.1108/IJQRM-07-2021-0245}, year = {2022}, abstract = {Purpose In the determination of the measurement uncertainty, the GUM procedure requires the building of a measurement model that establishes a functional relationship between the measurand and all influencing quantities. Since the effort of modelling as well as quantifying the measurement uncertainties depend on the number of influencing quantities considered, the aim of this study is to determine relevant influencing quantities and to remove irrelevant ones from the dataset. Design/methodology/approach In this work, it was investigated whether the effort of modelling for the determination of measurement uncertainty can be reduced by the use of feature selection (FS) methods. For this purpose, 9 different FS methods were tested on 16 artificial test datasets, whose properties (number of data points, number of features, complexity, features with low influence and redundant features) were varied via a design of experiments. Findings Based on a success metric, the stability, universality and complexity of the method, two FS methods could be identified that reliably identify relevant and irrelevant influencing quantities for a measurement model. Originality/value For the first time, FS methods were applied to datasets with properties of classical measurement processes. The simulation-based results serve as a basis for further research in the field of FS for measurement models. The identified algorithms will be applied to real measurement processes in the future.}, language = {en} }