@article{KapplerTanudyayaSchmittTippkoetteretal.2007, author = {Kappler-Tanudyaya, Nathalie and Schmitt, Heike and Tippk{\"o}tter, Nils and Meyer, Lina and Lenzen, Sigurd and Ulber, Roland}, title = {Combination of biotransformation and chromatography for the isolation and purification of mannoheptulose}, series = {Biotechnology Journal}, volume = {2}, journal = {Biotechnology Journal}, number = {6}, issn = {1860-7314}, doi = {10.1002/biot.200700004}, pages = {692 -- 699}, year = {2007}, abstract = {Mannoheptulose is a seven-carbon sugar. It is an inhibitor of glucose-induced insulin secretion due to its ability to selectively inhibit the enzyme glucokinase. An improved procedure for mannoheptulose isolation from avocados is described in this study (based upon the original method by La Forge). The study focuses on the combination of biotransformation and downstream processing (preparative chromatography) as an efficient method to produce a pure extract of mannoheptulose. The experiments were divided into two major phases. In the first phase, several methods and parameters were compared to optimize the mannoheptulose extraction with respect to efficiency and purity. In the second phase, a mass balance of mannoheptulose over the whole extraction process was undertaken to estimate the yield and efficiency of the total extraction process. The combination of biotransformation and preparative chromatography allowed the production of a pure mannoheptulose extract. In a biological test, the sugar inhibited the glucokinase enzyme activity efficiently.}, language = {en} } @incollection{HoffschmidtAlexopoulosGoettscheetal.2012, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and G{\"o}ttsche, Joachim and Sauerborn, Markus}, title = {High concentration solar collectors}, series = {Comprehensive renewable energy / ed. Ali Sayigh. Vol. 3: Solar thermal systems: components and applications}, volume = {3}, booktitle = {Comprehensive renewable energy / ed. Ali Sayigh. Vol. 3: Solar thermal systems: components and applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-08-087873-7}, doi = {10.1016/B978-0-08-087872-0.00306-1}, pages = {165 -- 209}, year = {2012}, abstract = {Solar thermal concentrated power is an emerging technology that provides clean electricity for the growing energy market. To the solar thermal concentrated power plant systems belong the parabolic trough, the Fresnel collector, the solar dish, and the central receiver system. For high-concentration solar collector systems, optical and thermal analysis is essential. There exist a number of measurement techniques and systems for the optical and thermal characterization of the efficiency of solar thermal concentrated systems. For each system, structure, components, and specific characteristics types are described. The chapter presents additionally an outline for the calculation of system performance and operation and maintenance topics. One main focus is set to the models of components and their construction details as well as different types on the market. In the later part of this chapter, different criteria for the choice of technology are analyzed in detail.}, language = {en} } @inproceedings{DuongNguyenStaat2015, author = {Duong, Minh Tuan and Nguyen, N. H. and Staat, Manfred}, title = {Modeling and simulation of a growing mass by the Smoothed Finite Element Method (SFEM)}, series = {Conference proceedings of the YIC GACM 2015 : 3rd ECCOMAS Young Investigators Conference and 6th GACM Colloquium on Computational Mechanics , Aachen, Germany, 20.07.2015 - 23.07.2015 / ed.: Stefanie Elgeti ; Jaan-Willem Simon}, booktitle = {Conference proceedings of the YIC GACM 2015 : 3rd ECCOMAS Young Investigators Conference and 6th GACM Colloquium on Computational Mechanics , Aachen, Germany, 20.07.2015 - 23.07.2015 / ed.: Stefanie Elgeti ; Jaan-Willem Simon}, publisher = {RWTH Aachen University}, address = {Aachen}, organization = {ECCOMAS Young Investigators Conference <3, 2015, Aachen>}, pages = {1 -- 4}, year = {2015}, language = {en} } @article{GoettenHavermannBraunetal.2021, author = {G{\"o}tten, Falk and Havermann, Marc and Braun, Carsten and Marino, Matthew and Bil, Cees}, title = {Aerodynamic Investigations of UAV Sensor Turrets - A Combined Wind-tunnel and CFD Approach}, series = {SciTech 2021, AIAA SciTech Forum, online, WW, Jan 11-15, 2021}, journal = {SciTech 2021, AIAA SciTech Forum, online, WW, Jan 11-15, 2021}, publisher = {AIAA}, address = {Reston, Va.}, doi = {10.2514/6.2021-1535}, pages = {1 -- 12}, year = {2021}, language = {en} } @inproceedings{StopforthFerreinSteinbauer2015, author = {Stopforth, Riaan and Ferrein, Alexander and Steinbauer, Gerald}, title = {Europe and South African collaboration on the Mechatronics and Robotics systems as part of the SA Robotics Center}, series = {ICRA 2015 Developing Countries Forum}, booktitle = {ICRA 2015 Developing Countries Forum}, pages = {3 S.}, year = {2015}, abstract = {Mechatronics consist of the integration of mechanical engineering, electronic integration and computer science/ engineering. These broad fields are essential for robotic systems, yet it makes it difficult for the researchers to specialize and be experts in all these fields. Collaboration between researchers allow for the integration of experience and specialization, to allow optimized systems. Collaboration between the European countries and South Africa is critical, as each country has different resources available, which the other countries might not have. Applications with the need for approval of any restrictions, can also be obtained easier in some countries compared to others, thus preventing the delays of research. Some problems that have been experienced are discussed, with the Robotics Center of South Africa as a possible solution.}, language = {en} } @article{GoettscheReillyWittwer1991, author = {G{\"o}ttsche, Joachim and Reilly, S. and Wittwer, Volker}, title = {Advanced window systems and building energy performance / S. Reilly ; J. G{\"o}ttsche ; V. Wittwer}, series = {Solar World Congress, 1991 : proceedings of the biennial congress of the International Solar Energy Society, Denver, Colorado, USA, 19-23 August 1991 / ed. by M. E. Arden ...}, journal = {Solar World Congress, 1991 : proceedings of the biennial congress of the International Solar Energy Society, Denver, Colorado, USA, 19-23 August 1991 / ed. by M. E. Arden ...}, publisher = {Pergamon Press}, address = {Oxford [u.a.]}, isbn = {0-08-041690-X}, pages = {3211 -- 3216}, year = {1991}, language = {en} } @article{KurulganDemirciDemirciLinderetal.2012, author = {Kurulgan Demirci, Eylem and Demirci, Taylan and Linder, Peter and Trzewik, J{\"u}rgen and Gierkowski, Jessica Ricarda and Gossmann, Matthias and Kayser, Peter and Porst, Dariusz and Digel, Ilya and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {rhAPC reduces the endothelial cell permeability via a decrease of contractile tensions induced by endothelial cells}, series = {Journal of Bioscience and Bioengineering}, volume = {113}, journal = {Journal of Bioscience and Bioengineering}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1347-4421}, doi = {10.1016/j.jbiosc.2012.03.019}, pages = {212 -- 219}, year = {2012}, abstract = {All cells generate contractile tension. This strain is crucial for mechanically controlling the cell shape, function and survival. In this study, the CellDrum technology quantifying cell's (the cellular) mechanical tension on a pico-scale was used to investigate the effect of lipopolysaccharide (LPS) on human aortic endothelial cell (HAoEC) tension. The LPS effect during gram-negative sepsis on endothelial cells is cell contraction causing endothelium permeability increase. The aim was to finding out whether recombinant activated protein C (rhAPC) would reverse the endothelial cell response in an in-vitro sepsis model. In this study, the established in-vitro sepsis model was confirmed by interleukin 6 (IL-6) levels at the proteomic and genomic levels by ELISA, real time-PCR and reactive oxygen species (ROS) activation by florescence staining. The thrombin cellular contraction effect on endothelial cells was used as a positive control when the CellDrum technology was applied. Additionally, the Ras homolog gene family, member A (RhoA) mRNA expression level was checked by real time-PCR to support contractile tension results. According to contractile tension results, the mechanical predominance of actin stress fibers was a reason of the increased endothelial contractile tension leading to enhanced endothelium contractility and thus permeability enhancement. The originality of this data supports firstly the basic measurement principles of the CellDrum technology and secondly that rhAPC has a beneficial effect on sepsis influenced cellular tension. The technology presented here is promising for future high-throughput cellular tension analysis that will help identify pathological contractile tension responses of cells and prove further cell in-vitro models.}, language = {en} } @inproceedings{StaatHeitzer1997, author = {Staat, Manfred and Heitzer, Michael}, title = {Limit and shakedown analysis for plastic design}, year = {1997}, abstract = {Limit and shakedown theorems are exact theories of classical plasticity for the direct computation of safety factors or of the load carrying capacity under constant and varying loads. Simple versions of limit and shakedown analysis are the basis of all design codes for pressure vessels and pipings. Using Finite Element Methods more realistic modeling can be used for a more rational design. The methods can be extended to yield optimum plastic design. In this paper we present a first implementation in FE of limit and shakedown analyses for perfectly plastic material. Limit and shakedown analyses are done of a pipe-junction and a interaction diagram is calculated. The results are in good correspondence with the analytic solution we give in the appendix.}, subject = {Einspielen }, language = {en} } @article{RingersBialonskiEgeetal.2023, author = {Ringers, Christa and Bialonski, Stephan and Ege, Mert and Solovev, Anton and Hansen, Jan Niklas and Jeong, Inyoung and Friedrich, Benjamin M. and Jurisch-Yaksi, Nathalie}, title = {Novel analytical tools reveal that local synchronization of cilia coincides with tissue-scale metachronal waves in zebrafish multiciliated epithelia}, series = {eLife}, volume = {12}, journal = {eLife}, publisher = {eLife Sciences Publications}, issn = {2050-084X}, doi = {10.7554/eLife.77701}, pages = {27 Seiten}, year = {2023}, abstract = {Motile cilia are hair-like cell extensions that beat periodically to generate fluid flow along various epithelial tissues within the body. In dense multiciliated carpets, cilia were shown to exhibit a remarkable coordination of their beat in the form of traveling metachronal waves, a phenomenon which supposedly enhances fluid transport. Yet, how cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine experiments, novel analysis tools, and theory to address this knowledge gap. To investigate collective dynamics of cilia, we studied zebrafish multiciliated epithelia in the nose and the brain. We focused mainly on the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Even though synchronization is local only, we observed global patterns of traveling metachronal waves across the zebrafish multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right noses, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions, i.e., cilia colliding with each other, and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment coincide and generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping.}, language = {en} } @inproceedings{PhilippBrillowskiDammersetal.2020, author = {Philipp, Brauner and Brillowski, Florian Sascha and Dammers, Hannah and K{\"o}nigs, Peter and Kordtomeikel, Frauke Carole and Petruck, Henning and Schaar, Anne Kathrin and Schmitz, Seth and Steuer-Dankert, Linda and Mertens, Alexander and Gries, Thomas and Leicht-Scholten, Carmen and Nagel, Saskia K. and Nitsch, Verena and Schuh, G{\"u}nther and Ziefle, Martina}, title = {A research framework for human aspects in the internet of production: an intra-company perspective}, series = {Proceedings of the AHFE 2020}, booktitle = {Proceedings of the AHFE 2020}, editor = {Mrugalska, Beata and Trzcielinski, Stefan and Karwowski, Waldemar and Nicolantonio, Massimo Di and Roossi, Emilio}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-51980-3}, doi = {10.1007/978-3-030-51981-0_1}, pages = {3 -- 17}, year = {2020}, abstract = {Digitalization in the production sector aims at transferring concepts and methods from the Internet of Things (IoT) to the industry and is, as a result, currently reshaping the production area. Besides technological progress, changes in work processes and organization are relevant for a successful implementation of the "Internet of Production" (IoP). Focusing on the labor organization and organizational procedures emphasizes to consider intra-company factors such as (user) acceptance, ethical issues, and ergonomics in the context of IoP approaches. In the scope of this paper, a research approach is presented that considers these aspects from an intra-company perspective by conducting studies on the shop floor, control level and management level of companies in the production area. Focused on four central dimensions—governance, organization, capabilities, and interfaces—this contribution presents a research framework that is focused on a systematic integration and consideration of human aspects in the realization of the IoP.}, language = {en} }