@inproceedings{GrundmannLangeDachwaldetal.2015, author = {Grundmann, Jan Thimo and Lange, Caroline and Dachwald, Bernd and Grimm, Christian and Koch, Aaron and Ulamec, Stephan}, title = {Small Spacecraft in Planetary Defence Related Applications-Capabilities, Constraints, Challenges}, series = {IEEE Aerospace Conference}, booktitle = {IEEE Aerospace Conference}, pages = {1 -- 18}, year = {2015}, abstract = {In this paper we present an overview of the characteristics and peculiarities of small spacecraft missions related to planetary defence applications. We provide a brief overview of small spacecraft missions to small solar system bodies. On this background we present recent missions and selected projects and related studies at the German Aerospace Center, DLR, that contribute to planetary defence related activities. These range from Earth orbit technology demonstrators to active science missions in interplanetary space. We provide a summary of experience from recently flown missions with DLR participation as well as a number of studies. These include PHILAE, the lander recently arrived on comet 67P/Churyumov-Gerasimenko aboard ESA's ROSETTA comet rendezvous mission, and the Mobile Asteroid Surface Scout, MASCOT, now underway to near-Earth asteroid (162173) 1999 JU3 aboard the Japanese sample-return probe HAYABUSA-2. We introduce the differences between the conventional methods employed in the design, integration and testing of large spacecraft and the new approaches developed by small spacecraft projects. We expect that the practical experience that can be gained from projects on extremely compressed timelines or with high-intensity operation phases on a newly explored small solar system body can contribute significantly to the study, preparation and realization of future planetary defence related missions. One is AIDA (Asteroid Impact \& Deflection Assessment), a joint effort of ESA,JHU/APL, NASA, OCA and DLR, combining JHU/APL's DART (Double Asteroid Redirection Test) and ESA's AIM (Asteroid Impact Monitor) spacecraft in a mission towards near-Eath binary asteroid (65803) Didymos.}, language = {en} } @inproceedings{GiresiniButenwegAndreinietal.2014, author = {Giresini, Linda and Butenweg, Christoph and Andreini, M. and De Falco, A. and Sassu, M.}, title = {Macro-elements identification in historic chapels: the case of St. Venerio Chapel in Reggiolo - Emilia Romagna}, series = {9th International Conference on Structural Analyses of Historical Conctruction, 14 - 17 October, 2014, Mexico City}, booktitle = {9th International Conference on Structural Analyses of Historical Conctruction, 14 - 17 October, 2014, Mexico City}, organization = {International Conference on Structural Analyses of Historical Conctructions <9, 2014, Mexico City>}, pages = {1 -- 12}, year = {2014}, language = {en} } @inproceedings{MeskourisHollerButenwegetal.2009, author = {Meskouris, Konstantin and Holler, Stefan and Butenweg, Christoph and Meiners, Daniel}, title = {A multiphase model with hypoplastic formulation of the solid phase and its application to earthquake engineering problems}, series = {Computational structural dynamics and earthquake engineering / ed. by Manolis Papadrakakis .... (Structures and infrastructures series ; 2)}, booktitle = {Computational structural dynamics and earthquake engineering / ed. by Manolis Papadrakakis .... (Structures and infrastructures series ; 2)}, publisher = {CRC Press}, address = {Boca Raton, Fla. [u.a.]}, isbn = {978-0-415-45261-8}, doi = {10.1201/9780203881637.ch19}, pages = {293 -- 308}, year = {2009}, language = {en} } @inproceedings{RajanHoltschoppenDalgueretal.2016, author = {Rajan, Sreelakshmy and Holtschoppen, B. and Dalguer, L. A. and Klinkel, S. and Butenweg, Christoph}, title = {Seismic fragility analysis of a non-conventional reinforced concrete structure considering different uncertainties}, series = {Proceedings of ISMA2016, International Conference on Noise and Vibration Engineering/USD2016, International Conference on Uncertainty in Structural Dynamics, / ISMA 2016, USD 2016}, booktitle = {Proceedings of ISMA2016, International Conference on Noise and Vibration Engineering/USD2016, International Conference on Uncertainty in Structural Dynamics, / ISMA 2016, USD 2016}, editor = {Sas, P.}, publisher = {KU Leuven}, address = {Leuven}, pages = {4213 -- 4225}, year = {2016}, language = {en} } @inproceedings{SchmidtKaschEichleretal.2021, author = {Schmidt, Thomas and Kasch, Susanne and Eichler, Fabian and Thurn, Laura}, title = {Process strategies on laser-based melting of glass powder}, series = {LiM 2021 proceedings}, booktitle = {LiM 2021 proceedings}, pages = {10 Seiten}, year = {2021}, abstract = {This paper presents the laser-based powder bed fusion (L-PBF) using various glass powders (borosilicate and quartz glass). Compared to metals, these require adapted process strategies. First, the glass powders were characterized with regard to their material properties and their processability in the powder bed. This was followed by investigations of the melting behavior of the glass powders with different laser wavelengths (10.6 µm, 1070 nm). In particular, the experimental setup of a CO2 laser was adapted for the processing of glass powder. An experimental setup with integrated coaxial temperature measurement/control and an inductively heatable build platform was created. This allowed the L-PBF process to be carried out at the transformation temperature of the glasses. Furthermore, the component's material quality was analyzed on three-dimensional test specimen with regard to porosity, roughness, density and geometrical accuracy in order to evaluate the developed L-PBF parameters and to open up possible applications.}, language = {en} } @inproceedings{RingsLudowicyFingeretal.2019, author = {Rings, Ren{\´e} and Ludowicy, Jonas and Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Sensitivity Analysis of General Aviation Aircraft with Parallel Hybrid-Electric Propulsion Systems}, series = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, booktitle = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, pages = {14 Seiten}, year = {2019}, language = {en} } @inproceedings{TullisCrookstonBung2019, author = {Tullis, Blake P. and Crookston, Brian M. and Bung, Daniel Bernhard}, title = {Weir head-discharge relationships: A multi-lab exercise}, series = {E-proceedings of the 38th IAHR World Congress September 1-6, 2019, Panama City, Panama}, booktitle = {E-proceedings of the 38th IAHR World Congress September 1-6, 2019, Panama City, Panama}, pages = {1 -- 15}, year = {2019}, language = {en} } @inproceedings{SauerbornKlimekHoffschmidtetal.2012, author = {Sauerborn, Markus and Klimek, J. and Hoffschmidt, Bernhard and Essen, H. and Sieger, S. and Biegel, G. and G{\"o}ttsche, Joachim and Hilger, Patrick}, title = {Eurosun 2012 : radar technology for heliostat posititon control}, series = {Eurosun 2012 : Solar energy for a brighter future : conference proceedings : Rijeka, 18.-22.09.2012}, booktitle = {Eurosun 2012 : Solar energy for a brighter future : conference proceedings : Rijeka, 18.-22.09.2012}, address = {Rijeka}, pages = {ID 80}, year = {2012}, language = {en} } @inproceedings{DuongNguyenStaat2012, author = {Duong, Minh Tuan and Nguyen, Nhu Hunyh and Staat, Manfred}, title = {Finite Element Implementation of a 3D Fung-type Model}, series = {ESMC-2012 - 8th European Solid Mechanics Conference, Graz, Austria, July 9-13, 2012}, booktitle = {ESMC-2012 - 8th European Solid Mechanics Conference, Graz, Austria, July 9-13, 2012}, publisher = {Verlag d. Technischen Universit{\"a}t Graz}, address = {Graz}, isbn = {978-3-85125-223-1}, year = {2012}, language = {en} } @inproceedings{DachwaldMengaliQuartaetal.2007, author = {Dachwald, Bernd and Mengali, Giovanni and Quarta, Alessandro A and Macdonald, Malcolm and McInnes, Colin R}, title = {Optical solar sail degradation modelling}, series = {1st International Symposium on Solar Sailing}, booktitle = {1st International Symposium on Solar Sailing}, pages = {1 -- 27}, year = {2007}, abstract = {We propose a simple parametric OSSD model that describes the variation of the sail film's optical coefficients with time, depending on the sail film's environmental history, i.e., the radiation dose. The primary intention of our model is not to describe the exact behavior of specific film-coating combinations in the real space environment, but to provide a more general parametric framework for describing the general optical degradation behavior of solar sails.}, language = {en} }