@article{BiewendtBoehnertBlaschke2020, author = {Biewendt, Marcel and B{\"o}hnert, Arno and Blaschke, Florian}, title = {The repercussions of the digital twin in the automotive industry on the new marketing logic}, series = {European Journal of Marketing and Economics}, volume = {4}, journal = {European Journal of Marketing and Economics}, number = {1}, publisher = {Revistia}, address = {London}, issn = {2601-8659}, doi = {10.26417/229eim64f}, pages = {68 -- 73}, year = {2020}, abstract = {Rapid development of virtual and data acquisition technology makes Digital Twin Technology (DT) one of the fundamental areas of research, while DT is one of the most promissory developments for the achievement of Industry 4.0. 48\% percent of organisations implementing the Internet of Things are already using DT or plan to use DT in 2020. The global market for DT is expected to grow by 38 percent annually, reaching USD16 billion by 2023. In addition, the number of participating organisations using digital twins is expected to triple by 2022. DTs are characterised by the integration between physical and virtual spaces. The driving idea for DT is to develop, test and build our devices in a virtual environment. The objective of this paper is to study the impact of DT in the automotive industry on the new marketing logic. This paper outlines the current challenges and possible directions for the future DT in marketing. This paper will be helpful for managers in the industry to use the advantages and potentials of DT.}, language = {en} } @article{BiewendtBlaschkeBoehnert2020, author = {Biewendt, Marcel and Blaschke, Florian and B{\"o}hnert, Arno}, title = {An evaluation of corporate sustainability in context of the Jevons paradox}, series = {SocioEconomic Challenges}, volume = {4}, journal = {SocioEconomic Challenges}, number = {3}, publisher = {ARMG Publishing}, address = {Sumy}, issn = {2520-6214}, doi = {10.21272/sec.4(3).46-65.2020}, pages = {46 -- 65}, year = {2020}, abstract = {The successful implementation and continuous development of sustainable corporate-level solutions is a challenge. These are endeavours in which social, environmental, and financial aspects must be weighed against each other. They can prove difficult to handle and, in some cases, almost unrealistic. Concepts such as green controlling, IT, and manufacturing look promising and are constantly evolving. This paper aims to achieve a better understanding of the field of corporate sustainability (CS). It will evaluate the hypothesis by which Corporate Sustainability thrives, via being efficient, increasing the performance, and raising the value of the input of the enterprises to the resources used. In fact, Corporate Sustainability on the surface could seem to contradict the idea, which supports the understanding that it encourages the reduction of the heavy reliance on the use of natural resources, the overall environmental impact, and above all, their protection. To understand how the contradictory notion of CS came about, in this part of the paper, the emphasis is placed on providing useful insight to this regard. The first part of this paper summarizes various definitions, organizational theories, and measures used for CS and its derivatives like green controlling, IT, and manufacturing. Second, a case study is given that combines the aforementioned sustainability models. In addition to evaluating the hypothesis, the overarching objective of this paper is to demonstrate the use of green controlling, IT, and manufacturing in the corporate sector. Furthermore, this paper outlines the current challenges and possible directions for CS in the future.}, language = {en} } @article{BiewendtBlaschkeBoehnert2020, author = {Biewendt, Marcel and Blaschke, Florian and B{\"o}hnert, Arno}, title = {The rebound effect - a systematic review of the current state of affairs}, series = {European Journal of Economics and Business Studies}, volume = {6}, journal = {European Journal of Economics and Business Studies}, number = {1}, publisher = {Revistia}, address = {London}, issn = {2601-8659}, doi = {10.26417/134nvy47z}, pages = {106 -- 120}, year = {2020}, abstract = {This publication is intended to present the current state of research on the rebound effect. First, a systematic literature review is carried out to outline (current) scientific models and theories. Research Question 1 follows with a mathematical introduction of the rebound effect, which shows the interdependence of consumer behaviour, technological progress, and interwoven effects for both. Thereupon, the research field is analysed for gaps and limitations by a systematic literature review. To ensure quantitative and qualitative results, a review protocol is used that integrates two different stages and covers all relevant publications released between 2000 and 2019. Accordingly, 392 publications were identified that deal with the rebound effect. These papers were reviewed to obtain relevant information on the two research questions. The literature review shows that research on the rebound effect is not yet comprehensive and focuses mainly on the effect itself rather than solutions to avoid it. Research Question 2 finds that the main gap, and thus the limitations, is that not much research has been published on the actual avoidance of the rebound effect yet. This is a major limitation for practical application by decision-makers and politicians. Therefore, a theoretical analysis was carried out to identify potential theories and ideas to avoid the rebound effect. The most obvious idea to solve this problem is the theory of a Steady-State Economy (SSE), which has been described and reviewed.}, language = {en} } @article{AliaziziOezsoyluBakhshiSichanietal.2024, author = {Aliazizi, Fereshteh and {\"O}zsoylu, Dua and Bakhshi Sichani, Soroush and Khorshid, Mehran and Glorieux, Christ and Robbens, Johan and Sch{\"o}ning, Michael J. and Wagner, Patrick}, title = {Development and Calibration of a Microfluidic, Chip-Based Sensor System for Monitoring the Physical Properties of Water Samples in Aquacultures}, series = {Micromachines}, volume = {15}, journal = {Micromachines}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2072-666X}, doi = {10.3390/mi15060755}, year = {2024}, abstract = {In this work, we present a compact, bifunctional chip-based sensor setup that measures the temperature and electrical conductivity of water samples, including specimens from rivers and channels, aquaculture, and the Atlantic Ocean. For conductivity measurements, we utilize the impedance amplitude recorded via interdigitated electrode structures at a single triggering frequency. The results are well in line with data obtained using a calibrated reference instrument. The new setup holds for conductivity values spanning almost two orders of magnitude (river versus ocean water) without the need for equivalent circuit modelling. Temperature measurements were performed in four-point geometry with an on-chip platinum RTD (resistance temperature detector) in the temperature range between 2 °C and 40 °C, showing no hysteresis effects between warming and cooling cycles. Although the meander was not shielded against the liquid, the temperature calibration provided equivalent results to low conductive Milli-Q and highly conductive ocean water. The sensor is therefore suitable for inline and online monitoring purposes in recirculating aquaculture systems.}, language = {en} } @article{FiedlerOrzadaFloeseretal.2021, author = {Fiedler, Thomas M. and Orzada, Stephan and Fl{\"o}ser, Martina and Rietsch, Stefan H. G. and Quick, Harald H. and Ladd, Mark E. and Bitz, Andreas}, title = {Performance analysis of integrated RF microstrip transmit antenna arrays with high channel count for body imaging at 7 T}, series = {NMR in Biomedicine}, volume = {34}, journal = {NMR in Biomedicine}, number = {7}, publisher = {Wiley}, address = {Weinheim}, issn = {0952-3480 (ISSN)}, doi = {10.1002/nbm.4515}, pages = {18 SeitenWiley}, year = {2021}, abstract = {The aim of the current study was to investigate the performance of integrated RF transmit arrays with high channel count consisting of meander microstrip antennas for body imaging at 7 T and to optimize the position and number of transmit ele- ments. RF simulations using multiring antenna arrays placed behind the bore liner were performed for realistic exposure conditions for body imaging. Simulations were performed for arrays with as few as eight elements and for arrays with high channel counts of up to 48 elements. The B1+ field was evaluated regarding the degrees of freedom for RF shimming in the abdomen. Worst-case specific absorption rate (SARwc ), SAR overestimation in the matrix compression, the number of virtual obser- vation points (VOPs) and SAR efficiency were evaluated. Constrained RF shimming was performed in differently oriented regions of interest in the body, and the devia- tion from a target B1+ field was evaluated. Results show that integrated multiring arrays are able to generate homogeneous B1+ field distributions for large FOVs, espe- cially for coronal/sagittal slices, and thus enable body imaging at 7 T with a clinical workflow; however, a low duty cycle or a high SAR is required to achieve homoge- neous B1+ distributions and to exploit the full potential. In conclusion, integrated arrays allow for high element counts that have high degrees of freedom for the pulse optimization but also produce high SARwc , which reduces the SAR accuracy in the VOP compression for low-SAR protocols, leading to a potential reduction in array performance. Smaller SAR overestimations can increase SAR accuracy, but lead to a high number of VOPs, which increases the computational cost for VOP evaluation and makes online SAR monitoring or pulse optimization challenging. Arrays with interleaved rings showed the best results in the study.}, language = {en} } @article{HarrisKleefeld2018, author = {Harris, Isaac and Kleefeld, Andreas}, title = {The inverse scattering problem for a conductive boundary condition and transmission eigenvalues}, series = {Applicable Analysis}, volume = {99}, journal = {Applicable Analysis}, number = {3}, publisher = {Taylor \& Francis}, address = {London}, issn = {1563-504X}, doi = {10.1080/00036811.2018.1504028}, pages = {508 -- 529}, year = {2018}, abstract = {In this paper, we consider the inverse scattering problem associated with an inhomogeneous media with a conductive boundary. In particular, we are interested in two problems that arise from this inverse problem: the inverse conductivity problem and the corresponding interior transmission eigenvalue problem. The inverse conductivity problem is to recover the conductive boundary parameter from the measured scattering data. We prove that the measured scatted data uniquely determine the conductivity parameter as well as describe a direct algorithm to recover the conductivity. The interior transmission eigenvalue problem is an eigenvalue problem associated with the inverse scattering of such materials. We investigate the convergence of the eigenvalues as the conductivity parameter tends to zero as well as prove existence and discreteness for the case of an absorbing media. Lastly, several numerical and analytical results support the theory and we show that the inside-outside duality method can be used to reconstruct the interior conductive eigenvalues.}, language = {en} } @article{KleefeldPieronek2020, author = {Kleefeld, Andreas and Pieronek, J.}, title = {Elastic transmission eigenvalues and their computation via the method of fundamental solutions}, series = {Applicable Analysis}, volume = {100}, journal = {Applicable Analysis}, number = {16}, publisher = {Taylore \& Francis}, address = {London}, issn = {1563-504X}, doi = {10.1080/00036811.2020.1721473}, pages = {3445 -- 3462}, year = {2020}, abstract = {A stabilized version of the fundamental solution method to catch ill-conditioning effects is investigated with focus on the computation of complex-valued elastic interior transmission eigenvalues in two dimensions for homogeneous and isotropic media. Its algorithm can be implemented very shortly and adopts to many similar partial differential equation-based eigenproblems as long as the underlying fundamental solution function can be easily generated. We develop a corroborative approximation analysis which also implicates new basic results for transmission eigenfunctions and present some numerical examples which together prove successful feasibility of our eigenvalue recovery approach.}, language = {en} } @article{BreussKleefeld2020, author = {Breuß, Michael and Kleefeld, Andreas}, title = {Implicit monotone difference methods for scalar conservation laws with source terms}, series = {Acta Mathematica Vietnamica}, volume = {45}, journal = {Acta Mathematica Vietnamica}, publisher = {Springer Singapore}, address = {Singapore}, issn = {2315-4144}, doi = {10.1007/s40306-019-00354-1}, pages = {709 -- 738}, year = {2020}, abstract = {In this article, a concept of implicit methods for scalar conservation laws in one or more spatial dimensions allowing also for source terms of various types is presented. This material is a significant extension of previous work of the first author (Breuß SIAM J. Numer. Anal. 43(3), 970-986 2005). Implicit notions are developed that are centered around a monotonicity criterion. We demonstrate a connection between a numerical scheme and a discrete entropy inequality, which is based on a classical approach by Crandall and Majda. Additionally, three implicit methods are investigated using the developed notions. Next, we conduct a convergence proof which is not based on a classical compactness argument. Finally, the theoretical results are confirmed by various numerical tests.}, language = {en} } @article{AsanteAsamaniKleefeldWade2020, author = {Asante-Asamani, E.O. and Kleefeld, Andreas and Wade, B.A.}, title = {A second-order exponential time differencing scheme for non-linear reaction-diffusion systems with dimensional splitting}, series = {Journal of Computational Physics}, volume = {415}, journal = {Journal of Computational Physics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9991}, doi = {10.1016/j.jcp.2020.109490}, year = {2020}, abstract = {A second-order L-stable exponential time-differencing (ETD) method is developed by combining an ETD scheme with approximating the matrix exponentials by rational functions having real distinct poles (RDP), together with a dimensional splitting integrating factor technique. A variety of non-linear reaction-diffusion equations in two and three dimensions with either Dirichlet, Neumann, or periodic boundary conditions are solved with this scheme and shown to outperform a variety of other second-order implicit-explicit schemes. An additional performance boost is gained through further use of basic parallelization techniques.}, language = {en} } @article{MartinVaqueroKleefeld2020, author = {Mart{\´i}n-Vaquero, J. and Kleefeld, Andreas}, title = {Solving nonlinear parabolic PDEs in several dimensions: Parallelized ESERK codes}, series = {Journal of Computational Physics}, journal = {Journal of Computational Physics}, number = {423}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9991}, doi = {10.1016/j.jcp.2020.109771}, year = {2020}, abstract = {There is a very large number of very important situations which can be modeled with nonlinear parabolic partial differential equations (PDEs) in several dimensions. In general, these PDEs can be solved by discretizing in the spatial variables and transforming them into huge systems of ordinary differential equations (ODEs), which are very stiff. Therefore, standard explicit methods require a large number of iterations to solve stiff problems. But implicit schemes are computationally very expensive when solving huge systems of nonlinear ODEs. Several families of Extrapolated Stabilized Explicit Runge-Kutta schemes (ESERK) with different order of accuracy (3 to 6) are derived and analyzed in this work. They are explicit methods, with stability regions extended, along the negative real semi-axis, quadratically with respect to the number of stages s, hence they can be considered to solve stiff problems much faster than traditional explicit schemes. Additionally, they allow the adaptation of the step length easily with a very small cost. Two new families of ESERK schemes (ESERK3 and ESERK6) are derived, and analyzed, in this work. Each family has more than 50 new schemes, with up to 84.000 stages in the case of ESERK6. For the first time, we also parallelized all these new variable step length and variable number of stages algorithms (ESERK3, ESERK4, ESERK5, and ESERK6). These parallelized strategies allow to decrease times significantly, as it is discussed and also shown numerically in two problems. Thus, the new codes provide very good results compared to other well-known ODE solvers. Finally, a new strategy is proposed to increase the efficiency of these schemes, and it is discussed the idea of combining ESERK families in one code, because typically, stiff problems have different zones and according to them and the requested tolerance the optimum order of convergence is different.}, language = {en} }