@article{WeldenSeverinsPoghossianetal.2022, author = {Welden, Melanie and Severins, Robin and Poghossian, Arshak and Wege, Christina and Bongaerts, Johannes and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of acetoin and diacetyl by a tobacco mosaic virus-assisted field-effect biosensor}, series = {Chemosensors}, volume = {10}, journal = {Chemosensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors10060218}, pages = {Artikel 218}, year = {2022}, abstract = {Acetoin and diacetyl have a major impact on the flavor of alcoholic beverages such as wine or beer. Therefore, their measurement is important during the fermentation process. Until now, gas chromatographic techniques have typically been applied; however, these require expensive laboratory equipment and trained staff, and do not allow for online monitoring. In this work, a capacitive electrolyte-insulator-semiconductor sensor modified with tobacco mosaic virus (TMV) particles as enzyme nanocarriers for the detection of acetoin and diacetyl is presented. The enzyme acetoin reductase from Alkalihalobacillus clausii DSM 8716ᵀ is immobilized via biotin-streptavidin affinity, binding to the surface of the TMV particles. The TMV-assisted biosensor is electrochemically characterized by means of leakage-current, capacitance-voltage, and constant capacitance measurements. In this paper, the novel biosensor is studied regarding its sensitivity and long-term stability in buffer solution. Moreover, the TMV-assisted capacitive field-effect sensor is applied for the detection of diacetyl for the first time. The measurement of acetoin and diacetyl with the same sensor setup is demonstrated. Finally, the successive detection of acetoin and diacetyl in buffer and in diluted beer is studied by tuning the sensitivity of the biosensor using the pH value of the measurement solution.}, language = {en} } @article{KarschuckKaulenPoghossianetal.2021, author = {Karschuck, Tobias and Kaulen, Corinna and Poghossian, Arshak and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Gold nanoparticle-modified capacitive field-effect sensors: Studying the surface density of nanoparticles and coupling of charged polyelectrolyte macromolecules}, series = {Electrochemical Science Advances}, volume = {2}, journal = {Electrochemical Science Advances}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0938-5193}, doi = {10.1002/elsa.202100179}, pages = {10 Seiten}, year = {2021}, abstract = {The coupling of ligand-stabilized gold nanoparticles with field-effect devices offers new possibilities for label-free biosensing. In this work, we study the immobilization of aminooctanethiol-stabilized gold nanoparticles (AuAOTs) on the silicon dioxide surface of a capacitive field-effect sensor. The terminal amino group of the AuAOT is well suited for the functionalization with biomolecules. The attachment of the positively-charged AuAOTs on a capacitive field-effect sensor was detected by direct electrical readout using capacitance-voltage and constant capacitance measurements. With a higher particle density on the sensor surface, the measured signal change was correspondingly more pronounced. The results demonstrate the ability of capacitive field-effect sensors for the non-destructive quantitative validation of nanoparticle immobilization. In addition, the electrostatic binding of the polyanion polystyrene sulfonate to the AuAOT-modified sensor surface was studied as a model system for the label-free detection of charged macromolecules. Most likely, this approach can be transferred to the label-free detection of other charged molecules such as enzymes or antibodies.}, language = {en} } @misc{EickmannEschFunkeetal.2014, author = {Eickmann, Matthias and Esch, Thomas and Funke, Harald and Abanteriba, Sylvester and Roosen, Petra}, title = {Biofuels in Aviation - Safety Implications of Bio-Ethanol Usage in General Aviation Aircraft}, year = {2014}, abstract = {Up in the clouds and above fuels and construction materials must be very carefully selected to ensure a smooth flight and touchdown. Out of around 38,000 single and dual-engined propeller aeroplanes, roughly a third are affected by a new trend in the fuel sector that may lead to operating troubles or even emergency landings: The admixture of bio-ethanol to conventional gasoline. Experiences with these fuels may be projected to alternative mixtures containing new components.}, language = {en} } @article{UysalFiratCreutzetal.2022, author = {Uysal, Karya and Firat, Ipek Serat and Creutz, Till and Aydin, Inci Cansu and Artmann, Gerhard and Teusch, Nicole and Temiz Artmann, Ayseg{\"u}l}, title = {A novel in vitro wound healing assay using free-standing, ultra-thin PDMS membranes}, series = {membranes}, volume = {2023}, journal = {membranes}, number = {13(1)}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/membranes13010022}, pages = {Artikel 22}, year = {2022}, abstract = {Advances in polymer science have significantly increased polymer applications in life sciences. We report the use of free-standing, ultra-thin polydimethylsiloxane (PDMS) membranes, called CellDrum, as cell culture substrates for an in vitro wound model. Dermal fibroblast monolayers from 28- and 88-year-old donors were cultured on CellDrums. By using stainless steel balls, circular cell-free areas were created in the cell layer (wounding). Sinusoidal strain of 1 Hz, 5\% strain, was applied to membranes for 30 min in 4 sessions. The gap circumference and closure rate of un-stretched samples (controls) and stretched samples were monitored over 4 days to investigate the effects of donor age and mechanical strain on wound closure. A significant decrease in gap circumference and an increase in gap closure rate were observed in trained samples from younger donors and control samples from older donors. In contrast, a significant decrease in gap closure rate and an increase in wound circumference were observed in the trained samples from older donors. Through these results, we propose the model of a cell monolayer on stretchable CellDrums as a practical tool for wound healing research. The combination of biomechanical cell loading in conjunction with analyses such as gene/protein expression seems promising beyond the scope published here.}, language = {en} } @inproceedings{deHondePorstDigel2017, author = {de Honde, Lukas and Porst, Dariusz and Digel, Ilya}, title = {A randomized, observational thermographic study of the neck region before and after a physiotherapeutic intervention}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Fischerauer, Alice}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {122 -- 123}, year = {2017}, language = {en} } @article{NaithaniKlostermeyerLangeetal.1971, author = {Naithani, V. K and Klostermeyer, Henning and Lange, H. R. and [u.a.], and Berndt, Heinz and [u.a.],}, title = {Preparation of peptide derivatives for porcine proinsulin-synthesis}, series = {Biological Chemistry}, volume = {352}, journal = {Biological Chemistry}, number = {1}, publisher = {De Gruyter}, issn = {1437-4315}, doi = {10.1515/bchm2.1971.352.1.1}, pages = {2 -- 3}, year = {1971}, language = {en} } @article{AyalaHarrisKleefeld2024, author = {Ayala, Rafael Ceja and Harris, Isaac and Kleefeld, Andreas}, title = {Direct sampling method via Landweber iteration for an absorbing scatterer with a conductive boundary}, series = {Inverse Problems and Imaging}, volume = {18}, journal = {Inverse Problems and Imaging}, number = {3}, publisher = {AIMS}, address = {Springfield}, issn = {1930-8337}, doi = {10.3934/ipi.2023051}, pages = {708 -- 729}, year = {2024}, abstract = {In this paper, we consider the inverse shape problem of recovering isotropic scatterers with a conductive boundary condition. Here, we assume that the measured far-field data is known at a fixed wave number. Motivated by recent work, we study a new direct sampling indicator based on the Landweber iteration and the factorization method. Therefore, we prove the connection between these reconstruction methods. The method studied here falls under the category of qualitative reconstruction methods where an imaging function is used to recover the absorbing scatterer. We prove stability of our new imaging function as well as derive a discrepancy principle for recovering the regularization parameter. The theoretical results are verified with numerical examples to show how the reconstruction performs by the new Landweber direct sampling method.}, language = {en} } @article{HacklBuessKammerlohretal.2021, author = {Hackl, Michael and Buess, Eduard and Kammerlohr, Sandra and Nacov, Julia and Staat, Manfred and Leschinger, Tim and M{\"u}ller, Lars P. and Wegmann, Kilian}, title = {A "comma sign"-directed subscapularis repair in anterosuperior rotator cuff tears yields biomechanical advantages in a cadaveric model}, series = {The american journal of sports medicine}, volume = {49}, journal = {The american journal of sports medicine}, number = {12}, publisher = {Sage}, address = {London}, issn = {1552-3365}, doi = {10.1177/03635465211031506}, pages = {3212 -- 3217}, year = {2021}, abstract = {Background: Additional stabilization of the "comma sign" in anterosuperior rotator cuff repair has been proposed to provide biomechanical benefits regarding stability of the repair. Purpose: This in vitro investigation aimed to investigate the influence of a comma sign-directed reconstruction technique for anterosuperior rotator cuff tears on the primary stability of the subscapularis tendon repair. Study Design: Controlled laboratory study. Methods: A total of 18 fresh-frozen cadaveric shoulders were used in this study. Anterosuperior rotator cuff tears (complete full-thickness tear of the supraspinatus and subscapularis tendons) were created, and supraspinatus repair was performed with a standard suture bridge technique. The subscapularis was repaired with either a (1) single-row or (2) comma sign technique. A high-resolution 3D camera system was used to analyze 3-mm and 5-mm gap formation at the subscapularis tendon-bone interface upon incremental cyclic loading. Moreover, the ultimate failure load of the repair was recorded. A Mann-Whitney test was used to assess significant differences between the 2 groups. Results: The comma sign repair withstood significantly more loading cycles than the single-row repair until 3-mm and 5-mm gap formation occurred (P≤ .047). The ultimate failure load did not reveal any significant differences when the 2 techniques were compared (P = .596). Conclusion: The results of this study show that additional stabilization of the comma sign enhanced the primary stability of subscapularis tendon repair in anterosuperior rotator cuff tears. Although this stabilization did not seem to influence the ultimate failure load, it effectively decreased the micromotion at the tendon-bone interface during cyclic loading. Clinical Relevance: The proposed technique for stabilization of the comma sign has shown superior biomechanical properties in comparison with a single-row repair and might thus improve tendon healing. Further clinical research will be necessary to determine its influence on the functional outcome.}, language = {en} } @article{FrotscherMuanghongDursunetal.2016, author = {Frotscher, Ralf and Muanghong, Danita and Dursun, G{\"o}zde and Goßmann, Matthias and Temiz Artmann, Ayseg{\"u}l and Staat, Manfred}, title = {Sample-specific adaption of an improved electro-mechanical model of in vitro cardiac tissue}, series = {Journal of Biomechanics}, volume = {49}, journal = {Journal of Biomechanics}, number = {12}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9290 (Print)}, doi = {10.1016/j.jbiomech.2016.01.039}, pages = {2428 -- 2435}, year = {2016}, abstract = {We present an electromechanically coupled computational model for the investigation of a thin cardiac tissue construct consisting of human-induced pluripotent stem cell-derived atrial, ventricular and sinoatrial cardiomyocytes. The mechanical and electrophysiological parts of the finite element model, as well as their coupling are explained in detail. The model is implemented in the open source finite element code Code_Aster and is employed for the simulation of a thin circular membrane deflected by a monolayer of autonomously beating, circular, thin cardiac tissue. Two cardio-active drugs, S-Bay K8644 and veratridine, are applied in experiments and simulations and are investigated with respect to their chronotropic effects on the tissue. These results demonstrate the potential of coupled micro- and macroscopic electromechanical models of cardiac tissue to be adapted to experimental results at the cellular level. Further model improvements are discussed taking into account experimentally measurable quantities that can easily be extracted from the obtained experimental results. The goal is to estimate the potential to adapt the presented model to sample specific cell cultures.}, language = {en} } @article{OjovanSteinmetz2022, author = {Ojovan, Michael I. and Steinmetz, Hans-J{\"u}rgen}, title = {Approaches to Disposal of Nuclear Waste}, series = {Energies}, volume = {15}, journal = {Energies}, number = {20}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en15207804}, pages = {Artikel 7804}, year = {2022}, abstract = {We present a concise mini overview on the approaches to the disposal of nuclear waste currently used or deployed. The disposal of nuclear waste is the end point of nuclear waste management (NWM) activities and is the emplacement of waste in an appropriate facility without the intention to retrieve it. The IAEA has developed an internationally accepted classification scheme based on the end points of NWM, which is used as guidance. Retention times needed for safe isolation of waste radionuclides are estimated based on the radiotoxicity of nuclear waste. Disposal facilities usually rely on a multi-barrier defence system to isolate the waste from the biosphere, which comprises the natural geological barrier and the engineered barrier system. Disposal facilities could be of a trench type, vaults, tunnels, shafts, boreholes, or mined repositories. A graded approach relates the depth of the disposal facilities' location with the level of hazard. Disposal practices demonstrate the reliability of nuclear waste disposal with minimal expected impacts on the environment and humans.}, language = {en} }