@article{SchopenNarayanBeckmannetal.2024, author = {Schopen, Oliver and Narayan, Sriram and Beckmann, Marvin and Najmi, Aezid-Ul-Hassan and Esch, Thomas and Shabani, Bahman}, title = {An EIS approach to quantify the effects of inlet air relative humidity on the performance of proton exchange membrane fuel cells: a pathway to developing a novel fault diagnostic method}, series = {International Journal of Hydrogen Energy}, volume = {58}, journal = {International Journal of Hydrogen Energy}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0360-3199 (print)}, issn = {1879-3487 (online)}, doi = {10.1016/j.ijhydene.2024.01.218}, pages = {1302 -- 1315}, year = {2024}, abstract = {In this work, the effect of low air relative humidity on the operation of a polymer electrolyte membrane fuel cell is investigated. An innovative method through performing in situ electrochemical impedance spectroscopy is utilised to quantify the effect of inlet air relative humidity at the cathode side on internal ionic resistances and output voltage of the fuel cell. In addition, algorithms are developed to analyse the electrochemical characteristics of the fuel cell. For the specific fuel cell stack used in this study, the membrane resistance drops by over 39 \% and the cathode side charge transfer resistance decreases by 23 \% after increasing the humidity from 30 \% to 85 \%, while the results of static operation also show an increase of ∼2.2 \% in the voltage output after increasing the relative humidity from 30 \% to 85 \%. In dynamic operation, visible drying effects occur at < 50 \% relative humidity, whereby the increase of the air side stoichiometry increases the drying effects. Furthermore, other parameters, such as hydrogen humidification, internal stack structure, and operating parameters like stoichiometry, pressure, and temperature affect the overall water balance. Therefore, the optimal humidification range must be determined by considering all these parameters to maximise the fuel cell performance and durability. The results of this study are used to develop a health management system to ensure sufficient humidification by continuously monitoring the fuel cell polarisation data and electrochemical impedance spectroscopy indicators.}, language = {en} } @inproceedings{VeettilRakshitSchopenetal.2022, author = {Veettil, Yadu Krishna Morassery and Rakshit, Shantam and Schopen, Oliver and Kemper, Hans and Esch, Thomas and Shabani, Bahman}, title = {Automated Control System Strategies to Ensure Safety of PEM Fuel Cells Using Kalman Filters}, series = {Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia}, booktitle = {Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia}, editor = {Bin Abdollah, Mohd Fadzli and Amiruddin, Hilmi and Singh, Amrik Singh Phuman and Munir, Fudhail Abdul and Ibrahim, Asriana}, publisher = {Springer Nature}, address = {Singapore}, isbn = {978-981-19-3178-9}, issn = {2195-4356}, doi = {10.1007/978-981-19-3179-6_55}, pages = {296 -- 299}, year = {2022}, abstract = {Having well-defined control strategies for fuel cells, that can efficiently detect errors and take corrective action is critically important for safety in all applications, and especially so in aviation. The algorithms not only ensure operator safety by monitoring the fuel cell and connected components, but also contribute to extending the health of the fuel cell, its durability and safe operation over its lifetime. While sensors are used to provide peripheral data surrounding the fuel cell, the internal states of the fuel cell cannot be directly measured. To overcome this restriction, Kalman Filter has been implemented as an internal state observer. Other safety conditions are evaluated using real-time data from every connected sensor and corrective actions automatically take place to ensure safety. The algorithms discussed in this paper have been validated thorough Model-in-the-Loop (MiL) tests as well as practical validation at a dedicated test bench.}, language = {en} } @inproceedings{SchopenKemperEsch2021, author = {Schopen, Oliver and Kemper, Hans and Esch, Thomas}, title = {Development of a comparison methodology and evaluation matrix for electrically driven compressors in ICE and FC}, series = {Proceedings of the 1st UNITED - Southeast Asia Automotive Interest Group (SAIG) International Conference}, booktitle = {Proceedings of the 1st UNITED - Southeast Asia Automotive Interest Group (SAIG) International Conference}, publisher = {FH Joanneum}, address = {Graz}, isbn = {978-3-902103-94-9}, pages = {45 -- 46}, year = {2021}, abstract = {In addition to electromobility and alternative drive systems, a focus is set on electrically driven compressors (EDC), with a high potential for increasing the efficiency of internal combustion engines (ICE) and fuel cells [01]. The primary objective is to increase the ICE torque, provided independently of the ICE speed by compressing the intake air and consequently the ICE filling level supported by the compressor. For operation independent from the ICE speed, the EDC compressor is decoupled from the turbine by using an electric compressor motor (CM) instead of the turbine. ICE performances can be increased by the use of EDC where individual compressor parameters are adapted to the respective application area [02] [03]. This task contains great challenges, increased by demands with regard to pollutant reduction while maintaining constant performance and reduced fuel consumption. The FH-Aachen is equipped with an EDC test bench which enables EDC-investigations in various configurations and operating modes. Characteristic properties of different compressors can be determined, which build the basis for a comparison methodology. Subject of this project is the development of a comparison methodology for EDC with an associated evaluation method and a defined overall evaluation method. For the application of this comparison methodology, corresponding series of measurements are carried out on the EDC test bench using an appropriate test device.}, language = {en} } @article{SchopenShahEschetal.2024, author = {Schopen, Oliver and Shah, Neel and Esch, Thomas and Shabani, Bahman}, title = {Critical quantitative evaluation of integrated health management methods for fuel cell applications}, series = {International Journal of Hydrogen Energy}, volume = {70}, journal = {International Journal of Hydrogen Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0360-3199}, doi = {10.1016/j.ijhydene.2024.05.156}, pages = {370 -- 388}, year = {2024}, abstract = {Online fault diagnostics is a crucial consideration for fuel cell systems, particularly in mobile applications, to limit downtime and degradation, and to increase lifetime. Guided by a critical literature review, in this paper an overview of Health management systems classified in a scheme is presented, introducing commonly utilised methods to diagnose FCs in various applications. In this novel scheme, various Health management system methods are summarised and structured to provide an overview of existing systems including their associated tools. These systems are classified into four categories mainly focused on model-based and non-model-based systems. The individual methods are critically discussed when used individually or combined aimed at further understanding their functionality and suitability in different applications. Additionally, a tool is introduced to evaluate methods from each category based on the scheme presented. This tool applies the technique of matrix evaluation utilising several key parameters to identify the most appropriate methods for a given application. Based on this evaluation, the most suitable methods for each specific application are combined to build an integrated Health management system.}, language = {en} } @inproceedings{SchopenShabaniEschetal.2022, author = {Schopen, Oliver and Shabani, Bahman and Esch, Thomas and Kemper, Hans and Shah, Neel}, title = {Quantitative evaluation of health management designs for fuel cell systems in transport vehicles}, series = {2nd UNITED-SAIG International Conference Proceedings}, booktitle = {2nd UNITED-SAIG International Conference Proceedings}, editor = {Rahim, S.A. and As'arry, A. and Zuhri, M.Y.M. and Harmin, M.Y. and Rezali, K.A.M. and Hairuddin, A.A.}, pages = {1 -- 3}, year = {2022}, abstract = {Focusing on transport vehicles, mainly with regard to aviation applications, this paper presents compilation and subsequent quantitative evaluation of methods aimed at building an optimum integrated health management solution for fuel cell systems. The methods are divided into two different main types and compiled in a related scheme. Furthermore, different methods are analysed and evaluated based on parameters specific to the aviation context of this study. Finally, the most suitable method for use in fuel cell health management systems is identified and its performance and suitability is quantified.}, language = {en} } @inproceedings{StarkRiepingEsch2023, author = {Stark, Ralf and Rieping, Carla and Esch, Thomas}, title = {The impact of guide tubes on flow separation in rocket nozzles}, series = {Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS}, booktitle = {Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS}, pages = {8 Seiten}, year = {2023}, abstract = {Rocket engine test facilities and launch pads are typically equipped with a guide tube. Its purpose is to ensure the controlled and safe routing of the hot exhaust gases. In addition, the guide tube induces a suction that effects the nozzle flow, namely the flow separation during transient start-up and shut-down of the engine. A cold flow subscale nozzle in combination with a set of guide tubes was studied experimentally to determine the main influencing parameters.}, language = {en} } @inproceedings{StarkBartelDitscheetal.2023, author = {Stark, Ralf and Bartel, Sebastian and Ditsche, Florian and Esch, Thomas}, title = {Design study of a 30kN LOX/LCH4 aerospike rocket engine for lunar lander application}, series = {Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS}, booktitle = {Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS}, pages = {9 Seiten}, year = {2023}, abstract = {Based on lunar lander concept EL3, various LOX/CH4 aerospike engines were studied. A distinction was made between single and cluster configurations as well as ideal and non-ideal contour concepts. It could be shown that non-ideal aerospike engines promise a significant payload gain.}, language = {en} } @misc{RothTippkoetter2016, author = {Roth, J. and Tippk{\"o}tter, Nils}, title = {New Approach for Enzymatic Hydrolysis of Lignocellulose with Selective Diffusion Separation of the Monosaccharide Products}, series = {Chemie Ingenieur Technik}, volume = {88}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201650301}, pages = {1237}, year = {2016}, abstract = {Enzymatic hydrolysis of lignocellulosic material plays an important role in the classical biorefinery approach. Apart from the pretreatment of the raw material, hydrolysis is the basis for the conversion of the cellulose and hemicellulose fraction into fermentable sugars. After hydrolysis, usually a solid-liquid separation takes place, in order to separate the residual plant material from the sugar-rich fraction, which can be subsequently used in a fermentation step. In order to factor out the separation step, the usage of in alginate immobilized crude cellulose fiber beads (CFBs) were evaluated. Pretreated cellulose fibers are incorporated in an alginate matrix together with the relevant enzymes. In doing so, sugars diffuse trough the alginate matrix, allowing a simplified delivery into the surrounding fluid. This again reduces product inhibition of the glucose on the enzyme catalysts. By means of standardized bead production the hydrolysis in lab scale was possible. First results show that liberation of glucose and xylose is possible, allowing a maximum total sugar yield of 75 \%.}, language = {en} } @article{AyalaHarrisKleefeld2024, author = {Ayala, Rafael Ceja and Harris, Isaac and Kleefeld, Andreas}, title = {Direct sampling method via Landweber iteration for an absorbing scatterer with a conductive boundary}, series = {Inverse Problems and Imaging}, volume = {18}, journal = {Inverse Problems and Imaging}, number = {3}, publisher = {AIMS}, address = {Springfield}, issn = {1930-8337}, doi = {10.3934/ipi.2023051}, pages = {708 -- 729}, year = {2024}, abstract = {In this paper, we consider the inverse shape problem of recovering isotropic scatterers with a conductive boundary condition. Here, we assume that the measured far-field data is known at a fixed wave number. Motivated by recent work, we study a new direct sampling indicator based on the Landweber iteration and the factorization method. Therefore, we prove the connection between these reconstruction methods. The method studied here falls under the category of qualitative reconstruction methods where an imaging function is used to recover the absorbing scatterer. We prove stability of our new imaging function as well as derive a discrepancy principle for recovering the regularization parameter. The theoretical results are verified with numerical examples to show how the reconstruction performs by the new Landweber direct sampling method.}, language = {en} } @inproceedings{KahraBreussKleefeldetal.2024, author = {Kahra, Marvin and Breuß, Michael and Kleefeld, Andreas and Welk, Martin}, title = {An Approach to Colour Morphological Supremum Formation Using the LogSumExp Approximation}, series = {Discrete Geometry and Mathematical Morphology}, booktitle = {Discrete Geometry and Mathematical Morphology}, editor = {Brunetti, Sara and Frosini, Andrea and Rinaldi, Simone}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-57793-2}, doi = {10.1007/978-3-031-57793-2_25}, pages = {325 -- 337}, year = {2024}, abstract = {Mathematical morphology is a part of image processing that has proven to be fruitful for numerous applications. Two main operations in mathematical morphology are dilation and erosion. These are based on the construction of a supremum or infimum with respect to an order over the tonal range in a certain section of the image. The tonal ordering can easily be realised in grey-scale morphology, and some morphological methods have been proposed for colour morphology. However, all of these have certain limitations. In this paper we present a novel approach to colour morphology extending upon previous work in the field based on the Loewner order. We propose to consider an approximation of the supremum by means of a log-sum exponentiation introduced by Maslov. We apply this to the embedding of an RGB image in a field of symmetric 2x2 matrices. In this way we obtain nearly isotropic matrices representing colours and the structural advantage of transitivity. In numerical experiments we highlight some remarkable properties of the proposed approach.}, language = {en} }