@article{JildehWagnerSchoening2021, author = {Jildeh, Zaid B. and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Sterilization of Objects, Products, and Packaging Surfaces and Their Characterization in Different Fields of Industry: The Status in 2020}, series = {physica status solidi (a) applications and materials science}, volume = {218}, journal = {physica status solidi (a) applications and materials science}, number = {13}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.202000732}, pages = {27 Seiten}, year = {2021}, abstract = {The treatment method to deactivate viable microorganisms from objects or products is termed sterilization. There are multiple forms of sterilization, each intended to be applied for a specific target, which depends on—but not limited to—the thermal, physical, and chemical stability of that target. Herein, an overview on the currently used sterilization processes in the global market is provided. Different sterilization techniques are grouped under a category that describes the method of treatment: radiation (gamma, electron beam, X-ray, and ultraviolet), thermal (dry and moist heat), and chemical (ethylene oxide, ozone, chlorine dioxide, and hydrogen peroxide). For each sterilization process, the typical process parameters as defined by regulations and the mode of antimicrobial activity are summarized. Finally, the recommended microorganisms that are used as biological indicators to validate sterilization processes in accordance with the rules that are established by various regulatory agencies are summarized.}, language = {en} } @article{MolinnusDrinicIkenetal.2021, author = {Molinnus, Denise and Drinic, Aleksander and Iken, Heiko and Kr{\"o}ger, Nadja and Zinser, Max and Smeets, Ralf and K{\"o}pf, Marius and Kopp, Alexander and Sch{\"o}ning, Michael Josef}, title = {Towards a flexible electrochemical biosensor fabricated from biocompatible Bombyx mori silk}, series = {Biosensors and Bioelectronics}, volume = {183}, journal = {Biosensors and Bioelectronics}, number = {Art. 113204}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2021.113204}, year = {2021}, language = {en} } @article{YoshinobuSchoening2021, author = {Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Light-addressable potentiometric sensors (LAPS) for cell monitoring and biosensing}, series = {Current Opinion in Electrochemistry}, journal = {Current Opinion in Electrochemistry}, number = {In Press, Journal Pre-proof}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2451-9103}, doi = {10.1016/j.coelec.2021.100727}, year = {2021}, language = {en} } @phdthesis{Bronder2020, author = {Bronder, Thomas}, title = {Label-free detection of tuberculosis DNA with capacitive field-effect biosensors}, publisher = {Philipps-Universit{\"a}t Marburg}, address = {Marburg}, doi = {10.17192/z2021.0056}, pages = {X, 162 S}, year = {2020}, language = {en} } @article{JablonskiMuenstermannNorketal.2021, author = {Jablonski, Melanie and M{\"u}nstermann, Felix and Nork, Jasmina and Molinnus, Denise and Muschallik, Lukas and Bongaerts, Johannes and Wagner, Torsten and Keusgen, Michael and Siegert, Petra and Sch{\"o}ning, Michael Josef}, title = {Capacitive field-effect biosensor applied for the detection of acetoin in alcoholic beverages and fermentation broths}, series = {physica status solidi (a) applications and materials science}, volume = {218}, journal = {physica status solidi (a) applications and materials science}, number = {13}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.202000765}, pages = {7 Seiten}, year = {2021}, abstract = {An acetoin biosensor based on a capacitive electrolyte-insulator-semiconductor (EIS) structure modified with the enzyme acetoin reductase, also known as butane-2,3-diol dehydrogenase (Bacillus clausii DSM 8716ᵀ), is applied for acetoin detection in beer, red wine, and fermentation broth samples for the first time. The EIS sensor consists of an Al/p-Si/SiO₂/Ta₂O₅ layer structure with immobilized acetoin reductase on top of the Ta₂O₅ transducer layer by means of crosslinking via glutaraldehyde. The unmodified and enzyme-modified sensors are electrochemically characterized by means of leakage current, capacitance-voltage, and constant capacitance methods, respectively.}, language = {en} } @article{WertIkenSchoeningetal.2021, author = {Wert, Stefan and Iken, Heiko and Sch{\"o}ning, Michael Josef and Matysik, Frank-Michael}, title = {Development of a temperature-pulse enhanced electrochemical glucose biosensor and characterization of its stability via scanning electrochemical microscopy}, series = {Electroanalysis}, journal = {Electroanalysis}, number = {Early View}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.202100089}, year = {2021}, abstract = {Glucose oxidase (GOx) is an enzyme frequently used in glucose biosensors. As increased temperatures can enhance the performance of electrochemical sensors, we investigated the impact of temperature pulses on GOx that was drop-coated on flattened Pt microwires. The wires were heated by an alternating current. The sensitivity towards glucose and the temperature stability of GOx was investigated by amperometry. An up to 22-fold increase of sensitivity was observed. Spatially resolved enzyme activity changes were investigated via scanning electrochemical microscopy. The application of short (<100 ms) heat pulses was associated with less thermal inactivation of the immobilized GOx than long-term heating.}, language = {en} } @article{JablonskiPoghossianSeverinetal.2021, author = {Jablonski, Melanie and Poghossian, Arshak and Severin, Robin and Keusgen, Michael and Wege, Christian and Sch{\"o}ning, Michael Josef}, title = {Capacitive Field-Effect Biosensor Studying Adsorption of Tobacco Mosaic Virus Particles}, series = {Micromachines}, volume = {12}, journal = {Micromachines}, number = {1}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/mi12010057}, pages = {Artikel 57}, year = {2021}, abstract = {Plant virus-like particles, and in particular, tobacco mosaic virus (TMV) particles, are increasingly being used in nano- and biotechnology as well as for biochemical sensing purposes as nanoscaffolds for the high-density immobilization of receptor molecules. The sensitive parameters of TMV-assisted biosensors depend, among others, on the density of adsorbed TMV particles on the sensor surface, which is affected by both the adsorption conditions and surface properties of the sensor. In this work, Ta₂O₅-gate field-effect capacitive sensors have been applied for the label-free electrical detection of TMV adsorption. The impact of the TMV concentration on both the sensor signal and the density of TMV particles adsorbed onto the Ta₂O₅-gate surface has been studied systematically by means of field-effect and scanning electron microscopy methods. In addition, the surface density of TMV particles loaded under different incubation times has been investigated. Finally, the field-effect sensor also demonstrates the label-free detection of penicillinase immobilization as model bioreceptor on TMV particles.}, language = {en} } @article{GivanoudiCornelisRasschaertetal.2021, author = {Givanoudi, Stella and Cornelis, Peter and Rasschaert, Geertrui and Wackers, Gideon and Iken, Heiko and Rolka, David and Yongabi, Derick and Robbens, Johan and Sch{\"o}ning, Michael Josef and Heyndrickx, Marc and Wagner, Patrick}, title = {Selective Campylobacter detection and quantification in poultry: A sensor tool for detecting the cause of a common zoonosis at its source}, series = {Sensors and Actuators B: Chemical}, journal = {Sensors and Actuators B: Chemical}, number = {In Press, Journal Pre-proof}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2021.129484}, pages = {Article 129484}, year = {2021}, language = {en} } @article{VahidpourGuthmanArreolaetal.2022, author = {Vahidpour, Farnoosh and Guthman, Eric and Arreola, Julia and Alghazali, Yousef H. M. and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Assessment of Various Process Parameters for Optimized Sterilization Conditions Using a Multi-Sensing Platform}, series = {Foods}, volume = {11}, journal = {Foods}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2304-8158}, doi = {10.3390/foods11050660}, pages = {Artikel 660}, year = {2022}, abstract = {In this study, an online multi-sensing platform was engineered to simultaneously evaluate various process parameters of food package sterilization using gaseous hydrogen peroxide (H₂O₂). The platform enabled the validation of critical aseptic parameters. In parallel, one series of microbiological count reduction tests was performed using highly resistant spores of B. atrophaeus DSM 675 to act as the reference method for sterility validation. By means of the multi-sensing platform together with microbiological tests, we examined sterilization process parameters to define the most effective conditions with regards to the highest spore kill rate necessary for aseptic packaging. As these parameters are mutually associated, a correlation between different factors was elaborated. The resulting correlation indicated the need for specific conditions regarding the applied H₂O₂ gas temperature, the gas flow and concentration, the relative humidity and the exposure time. Finally, the novel multi-sensing platform together with the mobile electronic readout setup allowed for the online and on-site monitoring of the sterilization process, selecting the best conditions for sterility and, at the same time, reducing the use of the time-consuming and costly microbiological tests that are currently used in the food package industry.}, language = {en} } @article{PoghossianWeldenBuniatyanetal.2021, author = {Poghossian, Arshak and Welden, Rene and Buniatyan, Vahe V. and Sch{\"o}ning, Michael Josef}, title = {An Array of On-Chip Integrated, Individually Addressable Capacitive Field-Effect Sensors with Control Gate: Design and Modelling}, series = {Sensors}, volume = {21}, journal = {Sensors}, number = {18}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s21186161}, pages = {17}, year = {2021}, abstract = {The on-chip integration of multiple biochemical sensors based on field-effect electrolyte-insulator-semiconductor capacitors (EISCAP) is challenging due to technological difficulties in realization of electrically isolated EISCAPs on the same Si chip. In this work, we present a new simple design for an array of on-chip integrated, individually electrically addressable EISCAPs with an additional control gate (CG-EISCAP). The existence of the CG enables an addressable activation or deactivation of on-chip integrated individual CG-EISCAPs by simple electrical switching the CG of each sensor in various setups, and makes the new design capable for multianalyte detection without cross-talk effects between the sensors in the array. The new designed CG-EISCAP chip was modelled in so-called floating/short-circuited and floating/capacitively-coupled setups, and the corresponding electrical equivalent circuits were developed. In addition, the capacitance-voltage curves of the CG-EISCAP chip in different setups were simulated and compared with that of a single EISCAP sensor. Moreover, the sensitivity of the CG-EISCAP chip to surface potential changes induced by biochemical reactions was simulated and an impact of different parameters, such as gate voltage, insulator thickness and doping concentration in Si, on the sensitivity has been discussed.}, language = {en} }