@article{BaringhausGaigall2019, author = {Baringhaus, Ludwig and Gaigall, Daniel}, title = {On an asymptotic relative efficiency concept based on expected volumes of confidence regions}, series = {Statistics - A Journal of Theoretical and Applied Statistic}, volume = {53}, journal = {Statistics - A Journal of Theoretical and Applied Statistic}, number = {6}, publisher = {Taylor \& Francis}, address = {London}, issn = {1029-4910}, doi = {10.1080/02331888.2019.1683560}, pages = {1396 -- 1436}, year = {2019}, abstract = {The paper deals with an asymptotic relative efficiency concept for confidence regions of multidimensional parameters that is based on the expected volumes of the confidence regions. Under standard conditions the asymptotic relative efficiencies of confidence regions are seen to be certain powers of the ratio of the limits of the expected volumes. These limits are explicitly derived for confidence regions associated with certain plugin estimators, likelihood ratio tests and Wald tests. Under regularity conditions, the asymptotic relative efficiency of each of these procedures with respect to each one of its competitors is equal to 1. The results are applied to multivariate normal distributions and multinomial distributions in a fairly general setting.}, language = {en} } @article{Gaigall2019, author = {Gaigall, Daniel}, title = {On a new approach to the multi-sample goodness-of-fit problem}, series = {Communications in Statistics - Simulation and Computation}, volume = {53}, journal = {Communications in Statistics - Simulation and Computation}, number = {10}, publisher = {Taylor \& Francis}, address = {London}, issn = {1532-4141}, doi = {10.1080/03610918.2019.1618472}, pages = {2971 -- 2989}, year = {2019}, abstract = {Suppose we have k samples X₁,₁,…,X₁,ₙ₁,…,Xₖ,₁,…,Xₖ,ₙₖ with different sample sizes ₙ₁,…,ₙₖ and unknown underlying distribution functions F₁,…,Fₖ as observations plus k families of distribution functions {G₁(⋅,ϑ);ϑ∈Θ},…,{Gₖ(⋅,ϑ);ϑ∈Θ}, each indexed by elements ϑ from the same parameter set Θ, we consider the new goodness-of-fit problem whether or not (F₁,…,Fₖ) belongs to the parametric family {(G₁(⋅,ϑ),…,Gₖ(⋅,ϑ));ϑ∈Θ}. New test statistics are presented and a parametric bootstrap procedure for the approximation of the unknown null distributions is discussed. Under regularity assumptions, it is proved that the approximation works asymptotically, and the limiting distributions of the test statistics in the null hypothesis case are determined. Simulation studies investigate the quality of the new approach for small and moderate sample sizes. Applications to real-data sets illustrate how the idea can be used for verifying model assumptions.}, language = {en} } @article{JanThimoBauerBieleetal.2019, author = {Jan Thimo, Grundmann and Bauer, Waldemar and Biele, Jens and Boden, Ralf and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Hercik, David}, title = {Capabilities of Gossamer-1 derived small spacecraft solar sails carrying Mascot-derived nanolanders for in-situ surveying of NEAs}, series = {Acta Astronautica}, volume = {156}, journal = {Acta Astronautica}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0094-5765}, doi = {10.1016/j.actaastro.2018.03.019}, pages = {330 -- 362}, year = {2019}, language = {en} } @incollection{Eggert2019, author = {Eggert, Mathias}, title = {Big Data Research - How to Structure the Changes of the Past Decade?}, series = {The Art of Structuring}, booktitle = {The Art of Structuring}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-06234-7}, doi = {10.1007/978-3-030-06234-7_26}, pages = {271 -- 281}, year = {2019}, abstract = {In the past decade, many IS researchers focused on researching the phenomenon of Big Data. At the same time, the relevance of data protection gets more attention than ever before. In particular, since the enactment of the European General Data Protection Regulation in May 2018 Information Systems research should provide answers for protecting personal data. The article at hand presents a structuring framework for Big Data research outcome and the consideration of data protection. IS Researchers might use the framework in order to structure Big Data literature and to identify research gaps that should be addressed in the future.}, language = {en} } @article{RossiParisiCasarietal.2019, author = {Rossi, Leonardo and Parisi, Davide and Casari, Chiara and Montanari, Luca and Ruggieri, Gabriella and Holtschoppen, Britta and Butenweg, Christoph}, title = {Empirical Data about Direct Economic Consequences of Emilia-Romagna 2012 Earthquake on Long-Span-Beam Buildings}, series = {Earthquake Spectra}, volume = {35}, journal = {Earthquake Spectra}, number = {4}, issn = {1944-8201}, doi = {10.1193/100118EQS224DP}, pages = {1979 -- 2001}, year = {2019}, language = {en} } @article{RossiHoltschoppenButenweg2019, author = {Rossi, Leonardo and Holtschoppen, Britta and Butenweg, Christoph}, title = {Official data on the economic consequences of the 2012 Emilia-Romagna earthquake: a first analysis of database SFINGE}, series = {Bulletin of Earthquake Engineering}, volume = {17}, journal = {Bulletin of Earthquake Engineering}, number = {9}, publisher = {Springer}, address = {Berlin}, doi = {10.1007\%2Fs10518-019-00655-8}, pages = {4855 -- 4884}, year = {2019}, language = {en} } @inproceedings{GrundmannBauerBodenetal.2019, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Boden, Ralf Christian and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Hercik, D. and Herique, A. and Ho, Tra-Mi and Jahnke, Rico and Kofman, Wlodek and Lange, Caroline and Lichtenheldt, Roy and McInnes, Colin R. and Mikschl, Tobias and Montenegro, Sergio and Moore, Iain and Pelivan, Ivanka and Peloni, Alessandro and Plettenmeier, Dirk and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Rogez, Yves and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and Toth, Norbert and Viavattene, Giulia and Wejmo, Elisabet and Wolff, Friederike and Ziach, Christian}, title = {Responsive exploration and asteroid characterization through integrated solar sail and lander development using small spacecraft technologies}, series = {IAA Planetary Defense Conference}, booktitle = {IAA Planetary Defense Conference}, year = {2019}, abstract = {In parallel to the evolution of the Planetary Defense Conference, the exploration of small solar system bodies has advanced from fast fly-bys on the sidelines of missions to the planets to the implementation of dedicated sample-return and in-situ analysis missions. Spacecraft of all sizes have landed, touch-and-go sampled, been gently beached, or impacted at hypervelocity on asteroid and comet surfaces. More have flown by close enough to image their surfaces in detail or sample their immediate environment, often as part of an extended or re-purposed mission. And finally, full-scale planetary defense experiment missions are in the making. Highly efficient low-thrust propulsion is increasingly applied beyond commercial use also in mainstream and flagship science missions, in combination with gravity assist propulsion. Another development in the same years is the growth of small spacecraft solutions, not in size but in numbers and individual capabilities. The on-going NASA OSIRIS-REx and JAXA HAYABUSA2 missions exemplify the trend as well as the upcoming NEA SCOUT mission or the landers MINERVA-II and MASCOT recently deployed on Ryugu. We outline likely as well as possible and efficient routes of continuation of all these developments towards a propellant-less and highly efficient class of spacecraft for small solar system body exploration: small spacecraft solar sails designed for carefree handling and equipped with carried landers and application modules, for all asteroid user communities -planetary science, planetary defence, and in-situ resource utilization. This projection builds on the experience gained in the development of deployable membrane structures leading up to the successful ground deployment test of a (20 m)² solar sail at DLR Cologne and in the 20 years since. It draws on the background of extensive trajectory optimization studies, the qualified technology of the DLR GOSSAMER-1 deployment demonstrator, and the MASCOT asteroid lander. These enable 'now-term' as well as near-term hardware solutions, and thus responsive fast-paced development. Mission types directly applicable to planetary defense include: single and Multiple NEA Rendezvous ((M)NR) for mitigation precursor, target monitoring and deflection follow-up tasks; sail-propelled head-on retrograde kinetic impactors (RKI) for mitigation; and deployable membrane based methods to modify the asteroid's properties or interact with it. The DLR-ESTEC GOSSAMER Roadmap initiated studies of missions uniquely feasible with solar sails such as Displaced L1 (DL1) space weather advance warning and monitoring and Solar Polar Orbiter (SPO) delivery which demonstrate the capability of near-term solar sails to achieve NEA rendezvous in any kind of orbit, from Earth-coorbital to extremely inclined and even retrograde orbits. For those mission types using separable payloads, such as SPO, (M)NR and RKI, design concepts can be derived from the separable Boom Sail Deployment Units characteristic of DLR GOSSAMER solar sail technology, nanolanders like MASCOT, or microlanders like the JAXA-DLR Jupiter Trojan Asteroid Lander for the OKEANOS mission which can shuttle from the sail to the asteroids visited and enable multiple NEA sample-return missions. These are an ideal match for solar sails in micro-spacecraft format whose launch configurations are compatible with ESPA and ASAP secondary payload platforms.}, language = {en} } @incollection{ButenwegHoltschoppen2019, author = {Butenweg, Christoph and Holtschoppen, Britta}, title = {Seismic design of structures and components in industrial units}, series = {Structural Dynamics with Applications in Earthquake and Wind Engineering}, booktitle = {Structural Dynamics with Applications in Earthquake and Wind Engineering}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-57550-5}, doi = {10.1007/978-3-662-57550-5_5}, pages = {359 -- 481}, year = {2019}, abstract = {Industrial units consist of the primary load-carrying structure and various process engineering components, the latter being by far the most important in financial terms. In addition, supply structures such as free-standing tanks and silos are usually required for each plant to ensure the supply of material and product storage. Thus, for the earthquake-proof design of industrial plants, design and construction rules are required for the primary structures, the secondary structures and the supply structures. Within the framework of these rules, possible interactions of primary and secondary structures must also be taken into account. Importance factors are used in seismic design in order to take into account the usually higher risk potential of an industrial unit compared to conventional building structures. Industrial facilities must be able to withstand seismic actions because of possibly wide-ranging damage consequences in addition to losses due to production standstill and the destruction of valuable equipment. The chapter presents an integrated concept for the seismic design of industrial units based on current seismic standards and the latest research results. Special attention is devoted to the seismic design of steel thin-walled silos and tank structures.}, language = {en} } @article{RossiStupazziniParisietal.2019, author = {Rossi, Leonardo and Stupazzini, Marco and Parisi, Davide and Holtschoppen, Britta and Ruggieri, Gabriella and Butenweg, Christoph}, title = {Empirical fragility functions and loss curves for long-span-beam buildings based on the 2012 Emilia-Romagna earthquake official database}, series = {Bulletin of Earthquake Engineering}, volume = {18}, journal = {Bulletin of Earthquake Engineering}, publisher = {Springer Nature}, issn = {1573-1456}, doi = {10.1007/s10518-019-00759-1}, pages = {1693 -- 1721}, year = {2019}, abstract = {The 2012 Emilia-Romagna earthquake, that mainly struck the homonymous Italian region provoking 28 casualties and damage to thousands of structures and infrastructures, is an exceptional source of information to question, investigate, and challenge the validity of seismic fragility functions and loss curves from an empirical standpoint. Among the most recent seismic events taking place in Europe, that of Emilia-Romagna is quite likely one of the best documented, not only in terms of experienced damages, but also for what concerns occurred losses and necessary reconstruction costs. In fact, in order to manage the compensations in a fair way both to citizens and business owners, soon after the seismic sequence, the regional administrative authority started (1) collecting damage and consequence-related data, (2) evaluating information sources and (3) taking care of the cross-checking of various reports. A specific database—so-called Sistema Informativo Gestione Europa (SFINGE)—was devoted to damaged business activities. As a result, 7 years after the seismic events, scientists can rely on a one-of-a-kind, vast and consistent database, containing information about (among other things): (1) buildings' location and dimensions, (2) occurred structural damages, (3) experienced direct economic losses and (4) related reconstruction costs. The present work is focused on a specific data subset of SFINGE, whose elements are Long-Span-Beam buildings (mostly precast) deployed for business activities in industry, trade or agriculture. With the available set of data, empirical fragility functions, cost and loss ratio curves are elaborated, that may be included within existing Performance Based Earthquake Engineering assessment toolkits.}, language = {en} } @article{ButenwegMarinkovicSalatic2019, author = {Butenweg, Christoph and Marinkovic, Marko and Salatic, Ratko}, title = {Experimental results of reinforced concrete frames with masonry infills under combined quasi-static in-plane and out-of-plane seismic loading}, series = {Bulletin of Earthquake Engineering}, volume = {17}, journal = {Bulletin of Earthquake Engineering}, publisher = {Springer}, address = {Berlin}, issn = {1573-1456}, doi = {10.1007/s10518-019-00602-7}, pages = {3397 -- 3422}, year = {2019}, language = {en} }