@article{BronderPoghossianSchejaetal.2015, author = {Bronder, Thomas and Poghossian, Arshak and Scheja, S. and Wu, Chunsheng and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Electrostatic Detection of Unlabelled Single- and Double-stranded DNA Using Capacitive Field-effect Devices Functionalized with a Positively Charged Polyelectrolyte Layer}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.710}, pages = {544 -- 547}, year = {2015}, abstract = {Capacitive field-effect electrolyte-insulator-semiconductor sensors consisting of an Al-p-Si-SiO2 structure have been used for the electrical detection of unlabelled single- and double-stranded DNA (dsDNA) molecules by their intrinsic charge. A simple functionalization protocol based on the layer-by-layer (LbL) technique was used to prepare a weak polyelectrolyte/probe-DNA bilayer, followed by the hybridization with complementary target DNA molecules. Due to the flat orientation of the LbL-adsorbed DNA molecules, a high sensor signal has been achieved. In addition, direct label-free detection of in-solution hybridized dsDNA molecules has been studied.}, language = {en} } @article{BronderPoghossianSchejaetal.2015, author = {Bronder, Thomas and Poghossian, Arshak and Scheja, Sabrina and Wu, Chunsheng and Keusgen, Michael and Mewes, Dieter and Sch{\"o}ning, Michael Josef}, title = {DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer}, series = {Applied Materials \& Interfaces}, volume = {36}, journal = {Applied Materials \& Interfaces}, number = {7}, publisher = {American Chemical Society}, address = {Washington, DC}, doi = {10.1021/acsami.5b05146}, pages = {20068 -- 20075}, year = {2015}, abstract = {Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event.}, language = {en} } @article{ButenwegHeuerWenk2015, author = {Butenweg, Christoph and Heuer, R. and Wenk, T.}, title = {Erdbebeningenieurwesen und Baudynamik}, series = {Bauingenieur}, volume = {90}, journal = {Bauingenieur}, number = {10}, publisher = {VDI Fachmedien}, address = {D{\"u}sseldorf}, issn = {00056650}, pages = {S1}, year = {2015}, language = {de} } @article{CehreliAkpinarTemizArtmannetal.2015, author = {Cehreli, Ruksan and Akpinar, Hale and Temiz Artmann, Ayseg{\"u}l and Sagol, Ozgul}, title = {Effects of Glutamine and Omega-3 Fatty Acids on Erythrocyte Deformability and Oxidative Damage in Rat Model of Enterocolitis}, series = {Gastroenterology Research}, volume = {8}, journal = {Gastroenterology Research}, number = {5}, issn = {1918-2813}, doi = {10.14740/gr683w}, pages = {265 -- 273}, year = {2015}, language = {en} } @article{ChenClauserMarquartetal.2015, author = {Chen, Tao and Clauser, Christoph and Marquart, Gabriele and Willbrand, Karen and Mottaghy, Darius}, title = {A new upscaling method for fractured porous media}, series = {Advances in Water Resources}, volume = {80}, journal = {Advances in Water Resources}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0309-1708}, doi = {10.1016/j.advwatres.2015.03.009}, pages = {60 -- 68}, year = {2015}, language = {en} } @article{Czarnecki2015, author = {Czarnecki, Christian}, title = {Moderne Telekommunikationsprodukte erfordern standardisierte Gesch{\"a}ftsprozesse}, series = {Wirtschaft und Wissenschaft}, journal = {Wirtschaft und Wissenschaft}, number = {2}, publisher = {Deutsche Telekom AG. Fachhochschule Leipzig}, address = {Leipzig}, pages = {7 -- 7}, year = {2015}, language = {de} } @article{DantismTakenagaWagneretal.2015, author = {Dantism, S. and Takenaga, S. and Wagner, P. and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Light-addressable Potentiometric Sensor (LAPS) Combined with Multi-chamber Structures to Investigate the Metabolic Activity of Cells}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.647}, pages = {384 -- 387}, year = {2015}, abstract = {LAPS are field-effect-based potentiometric sensors which are able to monitor analyte concentrations in a spatially resolved manner. Hence, a LAPS sensor system is a powerful device to record chemical imaging of the concentration of chemical species in an aqueous solution, chemical reactions, or the growth of cell colonies on the sensor surface, to record chemical images. In this work, multi-chamber 3D-printed structures made out of polymer (PP-ABS) were combined with LAPS chips to analyse differentially and simultaneously the metabolic activity of Escherichia coli K12 and Chinese hamster ovary (CHO) cells, and the responds of those cells to the addition of glucose solution.}, language = {en} } @article{DelleHuckBaeckeretal.2015, author = {Delle, Lotta E. and Huck, Christina and B{\"a}cker, Matthias and M{\"u}ller, Frank and Grandthyll, Samuel and Jacobs, Karin and Lilischkis, Rainer and Vu, Xuan T. and Sch{\"o}ning, Michael Josef and Wagner, Patrick and Thoelen, Roland and Weil, Maryam and Ingebrandt, Sven}, title = {Impedimetric immunosensor for the detection of histamine based on reduced graphene oxide}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431863}, pages = {1327 -- 1334}, year = {2015}, language = {en} } @article{DiktaKuehlheimMendoncaetal.2015, author = {Dikta, Gerhard and K{\"u}hlheim, Ren{\´e} and Mendonca, Jorge and Una-Alcarez, Jacobo de}, title = {Asymptotic representation of presmoothed Kaplan-Meier integrals with covariates in a semiparametric censorship model}, series = {Journal of Statistical Planning and Inference}, volume = {Vol. 171}, journal = {Journal of Statistical Planning and Inference}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-3758}, doi = {10.1016/j.jspi.2015.12.001}, pages = {10 -- 37}, year = {2015}, language = {en} } @article{DuongNguyenStaat2015, author = {Duong, Minh Tuan and Nguyen, Nhu Huynh and Staat, Manfred}, title = {Physical response of hyperelastic models for composite materials and soft tissues}, series = {Asia pacific journal on computational engineering}, volume = {2}, journal = {Asia pacific journal on computational engineering}, number = {3 (December 2015)}, issn = {2196-1166}, doi = {10.1186/s40540-015-0015-x}, pages = {1 -- 18}, year = {2015}, language = {en} }