@inproceedings{SchnellBrandesGligorevicetal.2008, author = {Schnell, Michael and Brandes, Sinja and Gligorevic, Snjezana and Walter, M. and Rihacek, Christoph and Sajatovic, Miodrag and Haindl, Bernhard}, title = {Interference mitigation for broadband L-DACS}, series = {27th IEEE/AIAA Digital Avionics Systems Conference : DASC 2008 : 26-30 Oct. 2008, St. Paul, Minn.}, booktitle = {27th IEEE/AIAA Digital Avionics Systems Conference : DASC 2008 : 26-30 Oct. 2008, St. Paul, Minn.}, organization = {Institute of Electrical and Electronics Engineers}, isbn = {978-1-4244-2207-4 ; 978-1-4244-2208-1}, pages = {2B2-1 -- 2B2-12}, year = {2008}, language = {en} } @inproceedings{SchnellFranzenGligorevic2010, author = {Schnell, Michael and Franzen, Nico and Gligorevic, Snjezana}, title = {L-DACS1 laboratory demonstrator development and compatibility measurement set-up}, series = {IEEE/AIAA 29th Digital Avionics Systems Conference (DASC) : 3 - 7 Oct. 2010, Salt Lake City, Utah}, booktitle = {IEEE/AIAA 29th Digital Avionics Systems Conference (DASC) : 3 - 7 Oct. 2010, Salt Lake City, Utah}, organization = {Institute of Electrical and Electronics Engineers}, isbn = {9781424466160 ; 9781424466184}, pages = {3E3-1 -- 3E3-11}, year = {2010}, language = {en} } @inproceedings{SchollBartellaMoluluoetal.2019, author = {Scholl, Ingrid and Bartella, Alex and Moluluo, Cem and Ertural, Berat and Laing, Frederic and Suder, Sebastian}, title = {MedicVR : Acceleration and Enhancement Techniques for Direct Volume Rendering in Virtual Reality}, series = {Bildverarbeitung f{\"u}r die Medizin 2019 : Algorithmen - Systeme - Anwendungen}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2019 : Algorithmen - Systeme - Anwendungen}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-25326-4}, doi = {10.1007/978-3-658-25326-4_32}, pages = {152 -- 157}, year = {2019}, language = {en} } @inproceedings{SchollSuderSchiffer2018, author = {Scholl, Ingrid and Suder, Sebastian and Schiffer, Stefan}, title = {Direct Volume Rendering in Virtual Reality}, series = {Bildverarbeitung f{\"u}r die Medizin 2018}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2018}, publisher = {Springer Vieweg}, address = {Berlin}, isbn = {978-3-662-56537-7}, doi = {10.1007/978-3-662-56537-7_79}, pages = {297 -- 302}, year = {2018}, language = {en} } @inproceedings{SchoppHeuermann2013, author = {Schopp, Christoph and Heuermann, Holger}, title = {Electrodeless low pressure lamp with bi-static matching at 2.45 GHz}, series = {2013 European Microwave Conference (EuMC) , Nuremberg}, booktitle = {2013 European Microwave Conference (EuMC) , Nuremberg}, publisher = {IEEE}, address = {Piscataway, NJ}, isbn = {978-1-4799-0264-4}, pages = {881 -- 884}, year = {2013}, language = {en} } @inproceedings{SchoppHeuermannHoltrup2014, author = {Schopp, Christoph and Heuermann, Holger and Holtrup, S.}, title = {Investigation on efficacy optimization of RF-driven automotive D-lamps}, series = {44th European Microwave Conference (EuMC),2014, Rome}, booktitle = {44th European Microwave Conference (EuMC),2014, Rome}, doi = {10.1109/EuMC.2014.6986645}, pages = {1154 -- 1157}, year = {2014}, language = {en} } @inproceedings{SchoppHeuermannMarso2017, author = {Schopp, Christoph and Heuermann, Holger and Marso, Michel}, title = {Multiphysical Study of an Atmospheric Microwave Argon Plasma Jet}, series = {IEEE Transactions on Plasma Science}, volume = {45}, booktitle = {IEEE Transactions on Plasma Science}, number = {6}, publisher = {IEEE}, issn = {1939-9375}, doi = {10.1109/TPS.2017.2692735}, pages = {932 -- 937}, year = {2017}, language = {en} } @inproceedings{SchoppNachtrodtHeuermannetal.2012, author = {Schopp, Christoph and Nachtrodt, Frederik and Heuermann, Holger and Scherer, Ulrich W. and Mostacci, Domiziano and Finger, Torsten and Tietsch, Wolfgang}, title = {A novel 2.45 GHz/200 W Microwave Plasma Jet for High Temperature Applications above 3600 K}, series = {Journal of Physics : Conference Series}, volume = {406}, booktitle = {Journal of Physics : Conference Series}, number = {012029}, issn = {1742-6596}, pages = {5}, year = {2012}, language = {en} } @inproceedings{SchubaHoefkenLinzbach2022, author = {Schuba, Marko and H{\"o}fken, Hans-Wilhelm and Linzbach, Sophie}, title = {An ICS Honeynet for Detecting and Analyzing Cyberattacks in Industrial Plants}, series = {2021 International Conference on Electrical, Computer and Energy Technologies (ICECET)}, booktitle = {2021 International Conference on Electrical, Computer and Energy Technologies (ICECET)}, publisher = {IEEE}, isbn = {978-1-6654-4231-2}, doi = {10.1109/ICECET52533.2021.9698746}, pages = {6 Seiten}, year = {2022}, abstract = {Cybersecurity of Industrial Control Systems (ICS) is an important issue, as ICS incidents may have a direct impact on safety of people or the environment. At the same time the awareness and knowledge about cybersecurity, particularly in the context of ICS, is alarmingly low. Industrial honeypots offer a cheap and easy to implement way to raise cybersecurity awareness and to educate ICS staff about typical attack patterns. When integrated in a productive network, industrial honeypots may not only reveal attackers early but may also distract them from the actual important systems of the network. Implementing multiple honeypots as a honeynet, the systems can be used to emulate or simulate a whole Industrial Control System. This paper describes a network of honeypots emulating HTTP, SNMP, S7communication and the Modbus protocol using Conpot, IMUNES and SNAP7. The nodes mimic SIMATIC S7 programmable logic controllers (PLCs) which are widely used across the globe. The deployed honeypots' features will be compared with the features of real SIMATIC S7 PLCs. Furthermore, the honeynet has been made publicly available for ten days and occurring cyberattacks have been analyzed}, language = {en} } @inproceedings{SchulteTiggesMatheisRekeetal.2023, author = {Schulte-Tigges, Joschua and Matheis, Dominik and Reke, Michael and Walter, Thomas and Kaszner, Daniel}, title = {Demonstrating a V2X enabled system for transition of control and minimum risk manoeuvre when leaving the operational design domain}, series = {HCII 2023: HCI in Mobility, Transport, and Automotive Systems}, booktitle = {HCII 2023: HCI in Mobility, Transport, and Automotive Systems}, editor = {Kr{\"o}mker, Heidi}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-35677-3 (Print)}, doi = {10.1007/978-3-031-35678-0_12}, pages = {200 -- 210}, year = {2023}, abstract = {Modern implementations of driver assistance systems are evolving from a pure driver assistance to a independently acting automation system. Still these systems are not covering the full vehicle usage range, also called operational design domain, which require the human driver as fall-back mechanism. Transition of control and potential minimum risk manoeuvres are currently research topics and will bridge the gap until full autonomous vehicles are available. The authors showed in a demonstration that the transition of control mechanisms can be further improved by usage of communication technology. Receiving the incident type and position information by usage of standardised vehicle to everything (V2X) messages can improve the driver safety and comfort level. The connected and automated vehicle's software framework can take this information to plan areas where the driver should take back control by initiating a transition of control which can be followed by a minimum risk manoeuvre in case of an unresponsive driver. This transition of control has been implemented in a test vehicle and was presented to the public during the IEEE IV2022 (IEEE Intelligent Vehicle Symposium) in Aachen, Germany.}, language = {en} }