@article{BaringhausGaigallThiele2018, author = {Baringhaus, Ludwig and Gaigall, Daniel and Thiele, Jan Philipp}, title = {Statistical inference for L²-distances to uniformity}, series = {Computational Statistics}, volume = {2018}, journal = {Computational Statistics}, number = {33}, publisher = {Springer}, address = {Berlin}, issn = {1613-9658}, doi = {10.1007/s00180-018-0820-0}, pages = {1863 -- 1896}, year = {2018}, abstract = {The paper deals with the asymptotic behaviour of estimators, statistical tests and confidence intervals for L²-distances to uniformity based on the empirical distribution function, the integrated empirical distribution function and the integrated empirical survival function. Approximations of power functions, confidence intervals for the L²-distances and statistical neighbourhood-of-uniformity validation tests are obtained as main applications. The finite sample behaviour of the procedures is illustrated by a simulation study.}, language = {en} } @inproceedings{BaronasIvanauskasKulys2006, author = {Baronas, Romas and Ivanauskas, Feliksas and Kulys, Juozas}, title = {Mathematical modeling of biosensors based on an array of enzyme microreactors}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1569}, year = {2006}, abstract = {This paper presents a two-dimensional-in-space mathematical model of biosensors based on an array of enzyme microreactors immobilised on a single electrode. The modeling system acts under amperometric conditions. The microreactors were modeled by particles and by strips. The model is based on the diffusion equations containing a nonlinear term related to the Michaelis-Menten kinetics of the enzymatic reaction. The model involves three regions: an array of enzyme microreactors where enzyme reaction as well as mass transport by diffusion takes place, a diffusion limiting region where only the diffusion takes place, and a convective region, where the analyte concentration is maintained constant. Using computer simulation, the influence of the geometry of the microreactors and of the diffusion region on the biosensor response was investigated. The digital simulation was carried out using the finite difference technique.}, subject = {Biosensor}, language = {en} } @article{BaroudWuBohneretal.2003, author = {Baroud, G. and Wu, J.Z. and Bohner, M and Sponagel, Stefan and Steffen, T.}, title = {How to determine the permeability for cement infiltration into osteoporotic cancellous bone}, series = {Medical Engineering \& Physics. 25 (2003), H. 4}, journal = {Medical Engineering \& Physics. 25 (2003), H. 4}, issn = {1350-4533}, pages = {283 -- 288}, year = {2003}, abstract = {Cement augmentation is an emerging surgical procedure in which bone cement is used to infiltrate and reinforce osteoporotic vertebrae. Although this infiltration procedure has been widely applied, it is performed empirically and little is known about the flow characteristics of cement during the injection process. We present a theoretical and experimental approach to investigate the intertrabecular bone permeability during the infiltration procedure. The cement permeability was considered to be dependent on time, bone porosity, and cement viscosity in our analysis. In order to determine the time-dependent permeability, ten cancellous bone cores were harvested from osteoporotic vertebrae, infiltrated with acrylic cement at a constant flow rate, and the pressure drop across the cores during the infiltration was measured. The viscosity dependence of the permeability was determined based on published experimental data. The theoretical model for the permeability as a function of bone porosity and time was then fit to the testing data. Our findings suggest that the intertrabecular bone permeability depends strongly on time. For instance, the initial permeability (60.89 mm4/N.s) reduced to approximately 63\% of its original value within 18 seconds. This study is the first to analyze cement flow through osteoporotic bone. The theoretical and experimental models provided in this paper are generic. Thus, they can be used to systematically study and optimize the infiltration process for clinical practice.}, subject = {Osteoporose}, language = {en} } @phdthesis{BassamAbduljabbar2015, author = {Bassam Abduljabbar, Rasha}, title = {Physikalisch-chemische Steuerung der Proteinstabilit{\"a}t in biologischen Systemen}, year = {2015}, language = {de} } @article{BassamArtmannHescheleretal.2011, author = {Bassam, Rasha and Artmann, Gerhard and Hescheler, J{\"u}rgen and Graef, T. and Temiz Artmann, Ayseg{\"u}l and Porst, Dariusz and Linder, Peter and Kayser, Peter and Arinkin, Vladimir and Gossmann, Matthias and Digel, Ilya}, title = {Alterations in human hemoglobin structure related to red blood cell storage}, year = {2011}, abstract = {The importance of the availability of stored blood or blood cells, respectively, for urgent transfusion cannot be overestimated. Nowadays, blood storage becomes even more important since blood products are used for epidemiological studies, bio-technical research or banked for transfusion purposes. Thus blood samples must not only be processed, stored, and shipped to preserve their efficacy and safety, but also all parameters of storage must be recorded and reported for Quality Assurance. Therefore, blood banks and clinical research facilities are seeking more accurate, automated means for blood storage and blood processing.}, subject = {H{\"a}moglobin}, language = {en} } @inproceedings{BassamDigelArtmann2009, author = {Bassam, Rasha and Digel, Ilya and Artmann, Gerhard}, title = {Effect of nitric oxide on protein thermal stability : [abstract]}, year = {2009}, abstract = {As a deduction from these results, we can conclude that proteins mainly in vitro, denaturate totally at a temperature between 57°C -62°C, and they also affected by NO and different ions types. In which mainly, NO cause earlier protein denaturation, which means that, NO has a destabilizing effect on proteins, and also different ions will alter the protein denaturation in which, some ions will cause earlier protein denaturation while others not.}, subject = {Stickstoffmonoxid}, language = {en} } @article{BassamDigelHescheleretal.2013, author = {Bassam, Rasha and Digel, Ilya and Hescheler, J{\"u}rgen and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard}, title = {Effects of spermine NONOate and ATP on protein aggregation: light scattering evidences}, series = {BMC Biophysics}, journal = {BMC Biophysics}, publisher = {BioMed Central}, address = {London}, isbn = {2046-1682}, url = {http://nbn-resolving.de/10.1186/2046-1682-6-1}, pages = {1 -- 14}, year = {2013}, language = {en} } @article{BassamHeschelerTemizArtmannetal.2012, author = {Bassam, Rasha and Hescheler, J{\"u}rgen and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard and Digel, Ilya}, title = {Effects of spermine NONOate and ATP on the thermal stability of hemoglobin}, series = {BMC Biophysics}, volume = {5}, journal = {BMC Biophysics}, publisher = {BioMed Central}, address = {London}, issn = {2046-1682}, doi = {10.1186/2046-1682-5-16}, pages = {Art. 16}, year = {2012}, abstract = {Background Minor changes in protein structure induced by small organic and inorganic molecules can result in significant metabolic effects. The effects can be even more profound if the molecular players are chemically active and present in the cell in considerable amounts. The aim of our study was to investigate effects of a nitric oxide donor (spermine NONOate), ATP and sodium/potassium environment on the dynamics of thermal unfolding of human hemoglobin (Hb). The effect of these molecules was examined by means of circular dichroism spectrometry (CD) in the temperature range between 25°C and 70°C. The alpha-helical content of buffered hemoglobin samples (0.1 mg/ml) was estimated via ellipticity change measurements at a heating rate of 1°C/min. Results Major results were: 1) spermine NONOate persistently decreased the hemoglobin unfolding temperature T u irrespectively of the Na + /K + environment, 2) ATP instead increased the unfolding temperature by 3°C in both sodium-based and potassium-based buffers and 3) mutual effects of ATP and NO were strongly influenced by particular buffer ionic compositions. Moreover, the presence of potassium facilitated a partial unfolding of alpha-helical structures even at room temperature. Conclusion The obtained data might shed more light on molecular mechanisms and biophysics involved in the regulation of protein activity by small solutes in the cell.}, language = {en} } @article{BaumannSchwarzKotliaretal.2009, author = {Baumann, Marcus and Schwarz, Sonja and Kotliar, Konstantin and Eynatten, Maximilian von and Trucksaess, Arno and Burckhardt, Klaus and Lutz, Jens and Heemann, Uwe and Lanzl, Ines}, title = {Non-diabetic chronic kidney disease influences retinal microvasculature}, series = {Kidney and Blood Pressure Research}, volume = {32}, journal = {Kidney and Blood Pressure Research}, number = {6}, publisher = {-}, isbn = {1423-0143}, pages = {428 -- 433}, year = {2009}, language = {en} } @phdthesis{Bayer2021, author = {Bayer, Robin}, title = {Development of a novel in-vitro vascular model for determination of physiological and pathophysiological mechanobiology}, publisher = {Universit{\"a}t zu K{\"o}ln}, address = {K{\"o}ln}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:38-362212}, pages = {IV, 115 Seiten}, year = {2021}, language = {en} }