@article{EngelmannShalabyShashaetal.2021, author = {Engelmann, Ulrich M. and Shalaby, Ahmed and Shasha, Carolyn and Krishnan, Kannan M. and Krause, Hans-Joachim}, title = {Comparative modeling of frequency mixing measurements of magnetic nanoparticles using micromagnetic simulations and Langevin theory}, series = {Nanomaterials}, volume = {11}, journal = {Nanomaterials}, number = {5}, publisher = {MDPI}, address = {Basel}, isbn = {2079-4991}, doi = {10.3390/nano11051257}, pages = {1 -- 16}, year = {2021}, abstract = {Dual frequency magnetic excitation of magnetic nanoparticles (MNP) enables enhanced biosensing applications. This was studied from an experimental and theoretical perspective: nonlinear sum-frequency components of MNP exposed to dual-frequency magnetic excitation were measured as a function of static magnetic offset field. The Langevin model in thermodynamic equilibrium was fitted to the experimental data to derive parameters of the lognormal core size distribution. These parameters were subsequently used as inputs for micromagnetic Monte-Carlo (MC)-simulations. From the hysteresis loops obtained from MC-simulations, sum-frequency components were numerically demodulated and compared with both experiment and Langevin model predictions. From the latter, we derived that approximately 90\% of the frequency mixing magnetic response signal is generated by the largest 10\% of MNP. We therefore suggest that small particles do not contribute to the frequency mixing signal, which is supported by MC-simulation results. Both theoretical approaches describe the experimental signal shapes well, but with notable differences between experiment and micromagnetic simulations. These deviations could result from Brownian relaxations which are, albeit experimentally inhibited, included in MC-simulation, or (yet unconsidered) cluster-effects of MNP, or inaccurately derived input for MC-simulations, because the largest particles dominate the experimental signal but concurrently do not fulfill the precondition of thermodynamic equilibrium required by Langevin theory.}, language = {en} } @incollection{EngelmannShashaSlabu2021, author = {Engelmann, Ulrich M. and Shasha, Carolyn and Slabu, Ioana}, title = {Magnetic nanoparticle relaxation in biomedical application: focus on simulating nanoparticle heating}, series = {Magnetic nanoparticles in human health and medicine}, booktitle = {Magnetic nanoparticles in human health and medicine}, publisher = {Wiley-Blackwell}, address = {Hoboken, New Jeersey}, isbn = {978-1-119-75467-1}, pages = {327 -- 354}, year = {2021}, language = {en} } @article{EngelmannShashaTeemanetal.2019, author = {Engelmann, Ulrich M. and Shasha, Carolyn and Teeman, Eric and Slabu, Iona and Krishnan, Kannan M.}, title = {Predicting size-dependent heating efficiency of magnetic nanoparticles from experiment and stochastic N{\´e}el-Brown Langevin simulation}, series = {Journal of Magnetism and Magnetic Materials}, volume = {471}, journal = {Journal of Magnetism and Magnetic Materials}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2018.09.041}, pages = {450 -- 456}, year = {2019}, language = {en} } @article{EngelmannSimsekShalabyetal.2024, author = {Engelmann, Ulrich M. and Simsek, Beril and Shalaby, Ahmed and Krause, Hans-Joachim}, title = {Key contributors to signal generation in frequency mixing magnetic detection (FMMD): an in silico study}, series = {Sensors}, volume = {24}, journal = {Sensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s24061945}, pages = {Artikel 1945}, year = {2024}, abstract = {Frequency mixing magnetic detection (FMMD) is a sensitive and selective technique to detect magnetic nanoparticles (MNPs) serving as probes for binding biological targets. Its principle relies on the nonlinear magnetic relaxation dynamics of a particle ensemble interacting with a dual frequency external magnetic field. In order to increase its sensitivity, lower its limit of detection and overall improve its applicability in biosensing, matching combinations of external field parameters and internal particle properties are being sought to advance FMMD. In this study, we systematically probe the aforementioned interaction with coupled N{\´e}el-Brownian dynamic relaxation simulations to examine how key MNP properties as well as applied field parameters affect the frequency mixing signal generation. It is found that the core size of MNPs dominates their nonlinear magnetic response, with the strongest contributions from the largest particles. The drive field amplitude dominates the shape of the field-dependent response, whereas effective anisotropy and hydrodynamic size of the particles only weakly influence the signal generation in FMMD. For tailoring the MNP properties and parameters of the setup towards optimal FMMD signal generation, our findings suggest choosing large particles of core sizes dc > 25 nm nm with narrow size distributions (σ < 0.1) to minimize the required drive field amplitude. This allows potential improvements of FMMD as a stand-alone application, as well as advances in magnetic particle imaging, hyperthermia and magnetic immunoassays.}, language = {en} } @article{ErbayraktarYilmazTemizArtmannetal.2007, author = {Erbayraktar, Zubeyde and Yilmaz, Osman and Temiz Artmann, Ayseg{\"u}l and Cehreli, Ruksan and Coker, Canan}, title = {Effects of Selenium Supplementation on Antioxidant Defense and Glucose Homeostasis in Experimental Diabetes Mellitus}, series = {Biological Trace Element Research}, volume = {118}, journal = {Biological Trace Element Research}, number = {3}, issn = {1559-0720}, pages = {217 -- 226}, year = {2007}, language = {en} } @article{ErkiKleinesZiemonsetal.1997, author = {Erki, I. and Kleines, H. and Ziemons, Karl and Zwoll, K.}, title = {Interaktives System zur Darstellung funktionaler Bilddaten}, series = {Bildverarbeitung f{\"u}r die Medizin : Algorithmen - Systeme - Anwendungen}, journal = {Bildverarbeitung f{\"u}r die Medizin : Algorithmen - Systeme - Anwendungen}, editor = {Lehmann, Thomas}, publisher = {Verl. der. Augustinus-Buchh.}, address = {Aachen}, isbn = {3-86073-519-5}, pages = {249 -- 254}, year = {1997}, language = {de} } @article{ErmelenkoYoshinobuMourzinaetal.2002, author = {Ermelenko, Y. and Yoshinobu, T and Mourzina, Y. and Levichev, S. and Furuichi, K. and Vlasov, Y. and Sch{\"o}ning, Michael Josef and Iwasaki, H.}, title = {Photocurable membranes for ion-selective light-addressable potentiometric sensors}, series = {Sensors and Actuators B. 85 (2002), H. 1-2}, journal = {Sensors and Actuators B. 85 (2002), H. 1-2}, isbn = {0925-4005}, pages = {79 -- 85}, year = {2002}, language = {en} } @article{ErmelenkoYoshinobuMourzinaetal.2001, author = {Ermelenko, Y. and Yoshinobu, T. and Mourzina, Y. and Furuichi, K. and Iwasaki, H. and Vlasov, Y. and Sch{\"o}ning, Michael Josef}, title = {Technology of photocurable polymeric membranes for integrated LAPS}, series = {Proceedings of the 5th East Asian Conference on Chemical Sensors; the 33rd Chemical Sensor Symposium : December 4 - 7, 2001, Huis Ten Bosch, Sasebo-shi, Nagasaki, Japan / Japan Association of Chemical Sensors; the Electrochemical Society of Japan}, journal = {Proceedings of the 5th East Asian Conference on Chemical Sensors; the 33rd Chemical Sensor Symposium : December 4 - 7, 2001, Huis Ten Bosch, Sasebo-shi, Nagasaki, Japan / Japan Association of Chemical Sensors; the Electrochemical Society of Japan}, publisher = {Japan Association of Chemical Sensors}, address = {Kasuga, Fukuoka-ken}, pages = {66 -- 68}, year = {2001}, language = {en} } @article{ErmelenkoYoshinobuMourzinaetal.2002, author = {Ermelenko, Y. and Yoshinobu, T. and Mourzina, Y. and Furuichi, K. and Levichev, S. and Vlasov, Y. and Sch{\"o}ning, Michael Josef and Iwasaki, H.}, title = {Lithium sensor based on the laser scanning semiconductor transducer}, series = {Analytica Chimica Acta. 459 (2002), H. 1}, journal = {Analytica Chimica Acta. 459 (2002), H. 1}, issn = {0378-4304}, pages = {1 -- 9}, year = {2002}, language = {en} } @article{ErmelenkoYoshinobuMourzinaetal.2003, author = {Ermelenko, Y. and Yoshinobu, T. and Mourzina, Y. and Sch{\"o}ning, Michael Josef and Furuichi, K. and Levichev, S. and Vlasov, Y. and Iwasaki, H.}, title = {The double K+/Ca2+ sensor based on laser scanned silicon transducer (LSST) for multicomponent analysis}, series = {Talanta. 59 (2003), H. 4}, journal = {Talanta. 59 (2003), H. 4}, isbn = {0039-9140}, pages = {785 -- 795}, year = {2003}, language = {en} }