@inproceedings{AchenbachBoschBreitbachetal.2013, author = {Achenbach, Timm and Bosch, Timo and Breitbach, Gerd and G{\"o}ttsche, Joachim and Sauerborn, Markus}, title = {Theoretical and experimental investigations regarding open volumetric receivers of CRS}, series = {Energy procedia : proceedings of the SolarPACES 2013 International Conference}, volume = {Vol. 49}, booktitle = {Energy procedia : proceedings of the SolarPACES 2013 International Conference}, issn = {1876-6102}, pages = {1259 -- 1268}, year = {2013}, language = {en} } @inproceedings{AchenbachBoschBreitbachetal.2013, author = {Achenbach, Timm and Bosch, Timo and Breitbach, Gerd and Sauerborn, Markus}, title = {Simulation zur Absorption und W{\"a}rme{\"u}bertragung an Solarturmabsorbern}, series = {77. Jahrestagung der DPG und DPG-Fr{\"u}hjahrstagung : 4.-8.3.2013}, booktitle = {77. Jahrestagung der DPG und DPG-Fr{\"u}hjahrstagung : 4.-8.3.2013}, organization = {Deutsche Physikalische Gesellschaft}, pages = {1 -- 14}, year = {2013}, language = {de} } @inproceedings{AchenbachGeimerGoettscheetal.2011, author = {Achenbach, Timm and Geimer, K. and G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Lynen, A. and Bauer, J.}, title = {Simulation and flow measurements of volumetric high temperature absorbers for solar tower power plants}, series = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, booktitle = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, address = {Granada}, pages = {1 CD-ROM}, year = {2011}, language = {en} } @inproceedings{AchenbachGeimerLynenetal.2012, author = {Achenbach, Timm and Geimer, Konstantin and Lynen, Arthur and G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard}, title = {Simulation of thermo-mechanical processes in open volumetric absorber modules}, series = {SolarPaces 2012 : concentrating solar power and chemical energy systems : Sept. 11 - 14 2012, Marrakech, Marokko}, booktitle = {SolarPaces 2012 : concentrating solar power and chemical energy systems : Sept. 11 - 14 2012, Marrakech, Marokko}, pages = {1 -- 8}, year = {2012}, language = {en} } @inproceedings{AchenbachGoettscheKaufholdetal.2011, author = {Achenbach, Timm and G{\"o}ttsche, Joachim and Kaufhold, O. and Hoffschmidt, Bernhard}, title = {Development of an edge module for open volumetric receiver for the use of the radiation at the receiver boundary region}, series = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, booktitle = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, address = {Granada}, pages = {1 CD-ROM}, year = {2011}, language = {en} } @techreport{AdlerHeymerRichteretal.2009, author = {Adler, J. and Heymer, H. and Richter, H. J. and Fend, Th. and Smirnova, O. and Rietbrock, P. and Petchenko, A. and Issendorff, F. v. and Steven, M. and Trimis, D. and Gonsior, Daniel and Helsper, Christoph and Hoffschmidt, Bernhard}, title = {INNOTRAP - innovative Rußfilter f{\"u}r LKW-Dieselmotoren : Abschlussbericht F{\"o}rderkennzeichen 16IN0313}, pages = {245 S. : Ill., graph. Darst.}, year = {2009}, language = {de} } @article{AgrafiotisMavroidisKonstandopoulosetal.2007, author = {Agrafiotis, Christos C. and Mavroidis, Ilias and Konstandopoulos, Athansios G. and Hoffschmidt, Bernhard and Stobbe, Per and Romero, Manuel and Fernandez-Quero, Valerio}, title = {Evaluation of porous silicon carbide monolithic honeycombs as volumetric receivers/collectors of concentrated solar radiation}, series = {Solar energy materials and solar cells}, volume = {Vol. 91}, journal = {Solar energy materials and solar cells}, number = {Iss. 6}, issn = {1879-3398 (E-Journal); 0927-0248 (Print)}, pages = {474 -- 488}, year = {2007}, language = {en} } @inproceedings{AhlbrinkAlexopoulosAnderssonetal.2009, author = {Ahlbrink, N. and Alexopoulos, Spiros and Andersson, J. and Belhomme, B. and Teixeira Boura, Cristiano Jos{\´e} and Gall, J. and Hirsch, T.}, title = {viCERP - the Virtual Institute of Central Receiver Power Plant}, series = {MATHMOD 2009 - 6th Vienna International Conference on Mathematical Modelling : February 11 - 13, 2009, Vienna, Austria. ARGESIM Report. No. 35}, booktitle = {MATHMOD 2009 - 6th Vienna International Conference on Mathematical Modelling : February 11 - 13, 2009, Vienna, Austria. ARGESIM Report. No. 35}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-3-901608-35-3}, year = {2009}, language = {en} } @article{Alexopoulos2012, author = {Alexopoulos, Spiros}, title = {Biogas systems: basics, biogas multifunction, principle of fermentation and hybrid application with a solar tower for the treatment of waste animal manure}, series = {Journal of Engineering Science and Technology Review}, volume = {5}, journal = {Journal of Engineering Science and Technology Review}, number = {4}, issn = {1791-2377}, pages = {48 -- 55}, year = {2012}, abstract = {Two of the main environmental problems of today's society are the continuously increasing production of organic wastes as well as the increase of carbon dioxide in the atmosphere and the related green house effect. A way to solve these problems is the production of biogas. Biogas is a combustible gas consisting of methane, carbon dioxide and small amounts of other gases and trace elements. Production of biogas through anaerobic digestion of animal manure and slurries as well as of a wide range of digestible organic wastes and agricultural residues, converts these substrates into electricity and heat and offers a natural fertiliser for agriculture. The microbiological process of decomposition of organic matter, in the absence of oxygen takes place in reactors, called digesters. Biogas can be used as a fuel in a gas turbine or burner and can be used in a hybrid solar tower system offering a solution for waste treatment of agricultural and animal residues. A solar tower system consists of a heliostat field, which concentrates direct solar irradiation on an open volumetric central receiver. The receiver heats up ambient air to temperatures of around 700°C. The hot air's heat energy is transferred to a steam Rankine cycle in a heat recovery steam generator (HRSG). The steam drives a steam turbine, which in turn drives a generator for producing electricity. In order to increase the operational hours of a solar tower power plant, a heat storage system and/ or hybridization may be considered. The advantage of solar-fossil hybrid power plants, compared to solar-only systems, lies in low additional investment costs due to an adaptable solar share and reduced technical and economical risks. On sunny days the hybrid system operates in a solar-only mode with the central receiver and on cloudy days and at night with the gas turbine only. As an alternative to methane gas, environmentally neutral biogas can be used for operating the gas turbine. Hence, the hybrid system is operated to 100\% from renewable energy sources}, language = {en} } @incollection{Alexopoulos2013, author = {Alexopoulos, Spiros}, title = {Biomass technology and bio-fuels: Heating/cooling and power}, series = {Renewable energy systems : theory, innovations, and intelligent applications / eds.: Socrates Kaplanis and Eleni Kaplani}, booktitle = {Renewable energy systems : theory, innovations, and intelligent applications / eds.: Socrates Kaplanis and Eleni Kaplani}, publisher = {Nova Science Publ.}, address = {Hauppauge, NY}, isbn = {9781624177415}, pages = {501 -- 523}, year = {2013}, language = {en} }