@inproceedings{BoernerFunkeHendricketal.2009, author = {B{\"o}rner, Sebastian and Funke, Harald and Hendrick, P. and Recker, E.}, title = {LES of Jets In Cross-Flow and Application to the "Micromix" Hydrogen Combustion}, series = {XIX International Symposium on Air Breathing Engines 2009 (ISABE 2009) : Proceedings of a meeting held 7-11 September 2009, Montreal, Canada}, booktitle = {XIX International Symposium on Air Breathing Engines 2009 (ISABE 2009) : Proceedings of a meeting held 7-11 September 2009, Montreal, Canada}, isbn = {9781615676064}, pages = {1555 -- 1561}, year = {2009}, language = {en} } @article{DachwaldBallUlamecetal.2009, author = {Dachwald, Bernd and Ball, Andrew J. and Ulamec, Stephan and Price, Michael E.}, title = {A small mission for in situ exploration of a primitive binary near-Earth asteroid / Ball, Andrew J. ; Ulamec, Stephan ; Dachwald, Bernd ; Price, Michael E. ; [u.a.]}, series = {Advances in Space Research. 43 (2009), H. 2}, journal = {Advances in Space Research. 43 (2009), H. 2}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0273-1177}, pages = {317 -- 324}, year = {2009}, language = {en} } @article{DachwaldCarnelliVasile2009, author = {Dachwald, Bernd and Carnelli, Ian and Vasile, Massimiliano}, title = {Evolutionary Neurocontrol: A Novel Method for Low-Thrust Gravity-Assist Trajectory Optimization / Carnelli, Ian ; Dachwald, Bernd ; Vasile, Massimiliano}, series = {Journal of guidance control and dynamics. 32 (2009), H. 2}, journal = {Journal of guidance control and dynamics. 32 (2009), H. 2}, publisher = {AIAA}, address = {Reston, Va.}, isbn = {0731-5090}, pages = {616 -- 625}, year = {2009}, language = {en} } @article{DachwaldOhndorfGill2009, author = {Dachwald, Bernd and Ohndorf, A. and Gill, E.}, title = {Optimization of low-thrust Earth-Moon transfers using evolutionary neurocontrol / Ohndorf, A. ; Dachwald, B. ; Gill, E.}, series = {IEEE Congress on Evolutionary Computation, 2009. CEC '09.}, journal = {IEEE Congress on Evolutionary Computation, 2009. CEC '09.}, isbn = {978-1-4244-2958-5}, pages = {358 -- 364}, year = {2009}, language = {en} } @inproceedings{DachwaldWurm2009, author = {Dachwald, Bernd and Wurm, P.}, title = {Design concept and modeling of an advanced solar photon thruster}, series = {Advances in the Astronautical Sciences}, booktitle = {Advances in the Astronautical Sciences}, publisher = {American Astronautical Society}, address = {San Diego, Calif.}, isbn = {978-087703554-1}, issn = {00653438}, pages = {723 -- 740}, year = {2009}, abstract = {The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), holds the potential of providing significant performance advantages over the flat solar sail. Previous SPT design concepts, however, do not consider shadowing effects and multiple reflections of highly concentrated solar radiation that would inevitably destroy the gossamer sail film. In this paper, we propose a novel advanced SPT (ASPT) design concept that does not suffer from these oversimplifications. We present the equations that describe the thrust force acting on such a sail system and compare its performance with respect to the conventional flat solar sail.}, language = {en} } @inproceedings{DachwaldWurm2009, author = {Dachwald, Bernd and Wurm, P.}, title = {Mission analysis for an advanced solar photon thruster}, series = {60th International Astronautical Congress 2009, IAC 2009}, volume = {Vol. 8}, booktitle = {60th International Astronautical Congress 2009, IAC 2009}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-161567908-9}, pages = {6838 -- 6851}, year = {2009}, abstract = {The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), is a solar sail design concept, for which the two basic functions of the solar sail, namely light collection and thrust direction, are uncoupled. In this paper, we introduce a novel SPT concept, termed the Advanced Solar Photon Thruster (ASPT). This model does not suffer from the simplified assumptions that have been made for the analysis of compound solar sails in previous studies. We present the equations that describe the force, which acts on the ASPT. After a detailed design analysis, the performance of the ASPT with respect to the conventional flat solar sail (FSS) is investigated for three interplanetary mission scenarios: An Earth-Venus rendezvous, where the solar sail has to spiral towards the Sun, an Earth-Mars rendezvous, where the solar sail has to spiral away from the Sun, and an Earth-NEA rendezvous (to near-Earth asteroid 1996FG3), where a large orbital eccentricity change is required. The investigated solar sails have realistic near-term characteristic accelerations between 0.1 and 0.2mm/s2. Our results show that a SPT is not superior to the flat solar sail unless very idealistic assumptions are made.}, language = {en} } @inproceedings{DigelDachwaldArtmannetal.2009, author = {Digel, Ilya and Dachwald, Bernd and Artmann, Gerhard and Linder, Peter and Funke, O.}, title = {A concept of a probe for particle analysis and life detection in icy environments}, year = {2009}, abstract = {A melting probe equipped with autofluorescence-based detection system combined with a light scattering unit, and, optionally, with a microarray chip would be ideally suited to probe icy environments like Europa's ice layer as well as the polar ice layers of Earth and Mars for recent and extinct live.}, subject = {Sonde}, language = {en} } @article{FischerKowalskiPudasainietal.2009, author = {Fischer, Jan-Thomas and Kowalski, Julia and Pudasaini, Shiva P. and Miller, S. A.}, title = {Dynamic Avalanche Modeling in Natural Terrain}, series = {International Snow Science Workshop, Davos 2009, Proceedings ; Proc. ISSW 2009}, journal = {International Snow Science Workshop, Davos 2009, Proceedings ; Proc. ISSW 2009}, pages = {448 -- 452}, year = {2009}, abstract = {The powerful avalanche simulation toolbox RAMMS (Rapid Mass Movements) is based on a depth-averaged hydrodynamic system of equations with a Voellmy-Salm friction relation. The two empirical friction parameters μ and � correspond to a dry Coulomb friction and a viscous resistance, respectively. Although μ and � lack a proper physical explanation, 60 years of acquired avalanche data in the Swiss Alps made a systematic calibration possible. RAMMS can therefore successfully model avalanche flow depth, velocities, impact pressure and run out distances. Pudasaini and Hutter (2003) have proposed extended, rigorously derived model equations that account for local curvature and twist. A coordinate transformation into a reference system, applied to the actual mountain topography of the natural avalanche path, is performed. The local curvature and the twist of the avalanche path induce an additional term in the overburden pressure. This leads to a modification of the Coulomb friction, the free-surface pressure gradient, the pressure induced by the channel, and the gravity components along and normal to the curved and twisted reference surface. This eventually guides the flow dynamics and deposits of avalanches. In the present study, we investigate the influence of curvature on avalanche flow in real mountain terrain. Simulations of real avalanche paths are performed and compared for the different models approaches. An algorithm to calculate curvature in real terrain is introduced in RAMMS. This leads to a curvature dependent friction relation in an extended version of the Voellmy-Salm model equations. Our analysis provides yet another step in interpreting the physical meaning and significance of the friction parameters used in the RAMMS computational environment.}, language = {en} } @inproceedings{FunkeEschRoosen2009, author = {Funke, Harald and Esch, Thomas and Roosen, Peter}, title = {Using motor gasoline for aircrafts - coping with growing bio-fuel-caused risks by understanding cause-effect relationship}, series = {Fuels 2009 : mineral oil based and alternative fuels ; 7th international colloquium ; January 14 - 15, 2009}, booktitle = {Fuels 2009 : mineral oil based and alternative fuels ; 7th international colloquium ; January 14 - 15, 2009}, editor = {Bartz, Wilfried J.}, publisher = {Technische Akademie Esslingen (TAE)}, address = {Ostfildern}, isbn = {978-3-924813-75-8}, pages = {237 -- 244}, year = {2009}, abstract = {The utilisation of vehicle-oriented gasoline in general aviation is very desirable for both ecological and economical reasons, as well as for general considerations of availability. As of today vehicle fuels may be used if the respective engine and cell are certified for such an operation. For older planes a supplementary technical certificate is provided for gasoline mixtures with less than 1 \% v/v ethanol only, though. Larger admixtures of ethanol may lead to sudden engine malfunction and should be considered as considerable security risks. Major problems are caused by the partially ethanol non-withstanding materials, a necessarily changed stochiometric adjustment of the engine for varying ethanol shares and the tendency for phase separation in the presence of absorbed water. The concepts of the flexible fuel vehicles are only partially applicable in the view of air security.}, language = {en} } @inproceedings{GehlerOberBloebaumDachwald2009, author = {Gehler, M. and Ober-Bl{\"o}baum, S. and Dachwald, Bernd}, title = {Application of discrete mechanics and optimal control to spacecraft in non-keplerian motion around small solar system bodies}, series = {Procceedings of the 60th International Astronautical Congress}, booktitle = {Procceedings of the 60th International Astronautical Congress}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-161567908-9}, pages = {1360 -- 1371}, year = {2009}, abstract = {Prolonged operations close to small solar system bodies require a sophisticated control logic to minimize propellant mass and maximize operational efficiency. A control logic based on Discrete Mechanics and Optimal Control (DMOC) is proposed and applied to both conventionally propelled and solar sail spacecraft operating at an arbitrarily shaped asteroid in the class of Itokawa. As an example, stand-off inertial hovering is considered, recently identified as a challenging part of the Marco Polo mission. The approach is easily extended to stand-off orbits. We show that DMOC is applicable to spacecraft control at small objects, in particular with regard to the fact that the changes in gravity are exploited by the algorithm to optimally control the spacecraft position. Furthermore, we provide some remarks on promising developments.}, language = {en} }