@article{DachwaldCarnelliVasile2006, author = {Dachwald, Bernd and Carnelli, I. and Vasile, M.}, title = {Evolutionary Neurocontrol as a Novel Method for Low-Thrust Gravity Assist Trajectory Optimization / I. Carnelli ; B. Dachwald ; M. Vasile}, series = {Proceedings of the Twenty-Fifth International Symposium on Space Technology and Science (Selected papers) : Kanazawa, [June 4 through June 11, 2006, at Kanazawa-shi Kanko Kaikan in Kanazawa city] / [Japan Society for Aeronautical and Space Sciences. Kohtaro Matsumoto [ed.-in-chief]}, journal = {Proceedings of the Twenty-Fifth International Symposium on Space Technology and Science (Selected papers) : Kanazawa, [June 4 through June 11, 2006, at Kanazawa-shi Kanko Kaikan in Kanazawa city] / [Japan Society for Aeronautical and Space Sciences. Kohtaro Matsumoto [ed.-in-chief]}, publisher = {JSASS}, address = {Tokyo}, isbn = {4-99005-002-9}, pages = {569 -- 574}, year = {2006}, language = {en} } @article{DachwaldCarnelliVasile2009, author = {Dachwald, Bernd and Carnelli, Ian and Vasile, Massimiliano}, title = {Evolutionary Neurocontrol: A Novel Method for Low-Thrust Gravity-Assist Trajectory Optimization / Carnelli, Ian ; Dachwald, Bernd ; Vasile, Massimiliano}, series = {Journal of guidance control and dynamics. 32 (2009), H. 2}, journal = {Journal of guidance control and dynamics. 32 (2009), H. 2}, publisher = {AIAA}, address = {Reston, Va.}, isbn = {0731-5090}, pages = {616 -- 625}, year = {2009}, language = {en} } @inproceedings{DachwaldFeldmannEspeetal.2012, author = {Dachwald, Bernd and Feldmann, Marco and Espe, Clemens and Plescher, Engelbert and Konstantinidis, K. and Forstner, R.}, title = {Enceladus explorer - A maneuverable subsurface probe for autonomous navigation through deep ice}, series = {63rd International Astronautical Congress 2012, IAC 2012; Naples; Italy; 1 October 2012 through 5 October 2012. (Proceedings of the International Astronautical Congress, IAC ; 3)}, booktitle = {63rd International Astronautical Congress 2012, IAC 2012; Naples; Italy; 1 October 2012 through 5 October 2012. (Proceedings of the International Astronautical Congress, IAC ; 3)}, publisher = {Curran}, address = {Red Hook, NY}, organization = {International Astronautical Congress <63, 2012, Napoli>}, isbn = {978-1-62276-979-7}, pages = {1756 -- 1766}, year = {2012}, language = {en} } @article{DachwaldKahleWie2006, author = {Dachwald, Bernd and Kahle, Ralph and Wie, Bong}, title = {Solar Sailing Kinetic Energy Impactor (KEI) Mission Design Tradeoffs for Impacting and Deflecting Asteroid 99942 Apophis}, series = {AIAA Guidance, Navigation, and Control Conference \& Exhibit - AIAA Atmospheric Flight Mechanics Conference \& Exhibit - AIAA Modeling and Simulation Technologies Conference \& Exhibit - AIAA/AAS Astrodynamics Specialist Conference \& Exhibit : [21 - 24 August 2006, Keystone, Colorado ; papers]. - (AIAA meeting papers on disc ; [11.]2006,19-20 )}, journal = {AIAA Guidance, Navigation, and Control Conference \& Exhibit - AIAA Atmospheric Flight Mechanics Conference \& Exhibit - AIAA Modeling and Simulation Technologies Conference \& Exhibit - AIAA/AAS Astrodynamics Specialist Conference \& Exhibit : [21 - 24 August 2006, Keystone, Colorado ; papers]. - (AIAA meeting papers on disc ; [11.]2006,19-20 )}, publisher = {American Institute of Aeronautics and Astronautics}, address = {Reston, Va.}, isbn = {1-56347-802-1}, pages = {1 -- 20}, year = {2006}, language = {en} } @inproceedings{DachwaldKahleWie2006, author = {Dachwald, Bernd and Kahle, Ralph and Wie, Bong}, title = {Solar sail Kinetic Energy Impactor (KEI) mission design tradeoffs for impacting and deflecting asteroid 99942 Apophis}, series = {AIAA/AAS Astrodynamics Specialist Conference and Exhibit}, booktitle = {AIAA/AAS Astrodynamics Specialist Conference and Exhibit}, doi = {10.2514/6.2006-6178}, pages = {1 -- 20}, year = {2006}, abstract = {Near-Earth asteroid 99942 Apophis provides a typical example for the evolution of asteroid orbits that lead to Earth-impacts after a close Earth-encounter that results in a resonant return. Apophis will have a close Earth-encounter in 2029 with potential very close subsequent Earth-encounters (or even an impact) in 2036 or later, depending on whether it passes through one of several so-called gravitational keyholes during its 2029-encounter. Several pre-2029-deflection scenarios to prevent Apophis from doing this have been investigated so far. Because the keyholes are less than 1 km in size, a pre-2029 kinetic impact is clearly the best option because it requires only a small change in Apophis' orbit to nudge it out of a keyhole. A single solar sail Kinetic Energy Impactor (KEI) spacecraft that impacts Apophis from a retrograde trajectory with a very high relative velocity (75-80 km/s) during one of its perihelion passages at about 0.75 AU would be a feasible option to do this. The spacecraft consists of a 160 m x 160 m, 168 kg solar sail assembly and a 150 kg impactor. Although conventional spacecraft can also achieve the required minimum deflection of 1 km for this approx. 320 m-sized object from a prograde trajectory, our solar sail KEI concept also allows the deflection of larger objects. In this paper, we also show that, even after Apophis has flown through one of the gravitational keyholes in 2029, solar sail Kinetic Energy Impactor (KEI) spacecraft are still a feasible option to prevent Apophis from impacting the Earth, but many KEIs would be required for consecutive impacts to increase the total Earth-miss distance to a safe value. In this paper, we elaborate potential pre- and post-2029 KEI impact scenarios for a launch in 2020, and investigate tradeoffs between different mission parameters.}, language = {en} } @inproceedings{DachwaldKahleWie2007, author = {Dachwald, Bernd and Kahle, Ralph and Wie, Bong}, title = {Head-on impact deflection of NEAs: a case study for 99942 Apophis}, series = {Planetary Defense Conference 2007}, booktitle = {Planetary Defense Conference 2007}, pages = {1 -- 12}, year = {2007}, abstract = {Near-Earth asteroid (NEA) 99942 Apophis provides a typical example for the evolution of asteroid orbits that lead to Earth-impacts after a close Earth-encounter that results in a resonant return. Apophis will have a close Earth-encounter in 2029 with potential very close subsequent Earth-encounters (or even an impact) in 2036 or later, depending on whether it passes through one of several less than 1 km-sized gravitational keyholes during its 2029-encounter. A pre-2029 kinetic impact is a very favorable option to nudge the asteroid out of a keyhole. The highest impact velocity and thus deflection can be achieved from a trajectory that is retrograde to Apophis orbit. With a chemical or electric propulsion system, however, many gravity assists and thus a long time is required to achieve this. We show in this paper that the solar sail might be the better propulsion system for such a mission: a solar sail Kinetic Energy Impactor (KEI) spacecraft could impact Apophis from a retrograde trajectory with a very high relative velocity (75-80 km/s) during one of its perihelion passages. The spacecraft consists of a 160 m × 160 m, 168 kg solar sail assembly and a 150 kg impactor. Although conventional spacecraft can also achieve the required minimum deflection of 1 km for this approx. 320 m-sized object from a prograde trajectory, our solar sail KEI concept also allows the deflection of larger objects. For a launch in 2020, we also show that, even after Apophis has flown through one of the gravitational keyholes in 2029, the solar sail KEI concept is still feasible to prevent Apophis from impacting the Earth, but many KEIs would be required for consecutive impacts to increase the total Earth-miss distance to a safe value}, language = {en} } @article{DachwaldLeipoldFichtner2003, author = {Dachwald, Bernd and Leipold, M. and Fichtner, H.}, title = {Heliopause Explorer - A Sailcraft Mission to the Outer Boundaries of the Solar System / M. Leipold ; H. Fichtner ; B. Heber ... B. Dachwald ...}, series = {Proceedings of the Fifth IAA International Conference on Low Cost Planetary Missions : 24 - 26 September 2003, ESTEC, Noordwijk, the Netherlands / [comp. by R. A. Harris]}, journal = {Proceedings of the Fifth IAA International Conference on Low Cost Planetary Missions : 24 - 26 September 2003, ESTEC, Noordwijk, the Netherlands / [comp. by R. A. Harris]}, publisher = {ESA}, address = {Noordwijk}, isbn = {92-9092-853-0}, pages = {367 -- 375}, year = {2003}, language = {en} } @article{DachwaldMacDonaldMcInnes2007, author = {Dachwald, Bernd and MacDonald, Malcolm and McInnes, Colin R.}, title = {Heliocentric Solar Sail Orbit Transfers with Locally Optimal Control Laws / Malcolm Macdonald ; Colin McInnes ; Bernd Dachwald}, series = {Journal of Spacecraft and Rockets. 44 (2007), H. 1}, journal = {Journal of Spacecraft and Rockets. 44 (2007), H. 1}, isbn = {0022-4650}, pages = {273 -- 276}, year = {2007}, language = {en} } @article{DachwaldMcDonaldMcInnesetal.2007, author = {Dachwald, Bernd and McDonald, Malcolm and McInnes, Colin R. and Mengali, Giovanni}, title = {Impact of Optical Degradation on Solar Sail Mission Performance}, series = {Journal of Spacecraft and Rockets. 44 (2007), H. 4}, journal = {Journal of Spacecraft and Rockets. 44 (2007), H. 4}, isbn = {0022-4650}, pages = {740 -- 749}, year = {2007}, language = {en} } @article{DachwaldMengaliQuartaetal.2006, author = {Dachwald, Bernd and Mengali, Giovanni and Quarta, Alessandrao A. and Macdonald, Malcolm}, title = {Parametric Model and Optimal Control of Solar Sails with Optical Degradation}, series = {Journal of guidance, control, and dynamics. 29 (2006), H. 5}, journal = {Journal of guidance, control, and dynamics. 29 (2006), H. 5}, isbn = {0162-3192}, pages = {1170 -- 1178}, year = {2006}, language = {en} }