@article{MerschenzQuackMootz1988, author = {Merschenz-Quack, Angelika and Mootz, D.}, title = {Structures of sulfuryl halides: SO2F2, SO2CIF and SO2Cl2 / Mootz, D. ; Merschenz-Quack, A.}, series = {Acta crystallographica / Section C, Crystal structure communications. C 44 (1988), H. 5}, journal = {Acta crystallographica / Section C, Crystal structure communications. C 44 (1988), H. 5}, isbn = {0108-2701}, pages = {924 -- 925}, year = {1988}, language = {en} } @article{MerschenzQuackMootz1990, author = {Merschenz-Quack, Angelika and Mootz, D.}, title = {Structure of 5-sulfosalicylic acid pentahydrate}, series = {Acta crystallographica / Section C, Crystal structure communications. C 46 (1990), H. 8}, journal = {Acta crystallographica / Section C, Crystal structure communications. C 46 (1990), H. 8}, isbn = {0108-2701}, pages = {1478 -- 1480}, year = {1990}, language = {en} } @article{MeyerHentschkeHageretal.2017, author = {Meyer, Jan and Hentschke, Reinhard and Hager, Jonathan and Hojdis, Nils and Karimi-Varzaneh, Hossein Ali}, title = {Molecular Simulation of Viscous Dissipation due to Cyclic Deformation of a Silica-Silica Contact in Filled Rubber}, series = {Macromolecules}, volume = {50}, journal = {Macromolecules}, number = {17}, issn = {1520-5835}, doi = {10.1021/acs.macromol.7b00947}, pages = {6679 -- 6689}, year = {2017}, language = {en} } @article{MeyerStorkHoeckerBerndt1992, author = {Meyer-Stork, L. Sebastian and H{\"o}cker, Hartwig and Berndt, Heinz}, title = {Syntheses and reactions of urethanes of cellobiose and cellulose-containing uretdione groups}, series = {Journal of applied polymer science}, volume = {44}, journal = {Journal of applied polymer science}, number = {6}, issn = {1097-4628}, pages = {1043 -- 1049}, year = {1992}, language = {en} } @article{MeyerStorkKalbeKuropkaetal.1988, author = {Meyer-Stork, L. Sebastian and Kalbe, Jochen and Kuropka, Rolf and Sauter, S. L. and H{\"o}cker, Hartwig and Berndt, Heinz}, title = {Eindeutige Provenienzanalyse von Wolle und feinen Tierhaaren mit Hilfe der Erbsubstanz (DNS)}, series = {Textilveredlung : schweizerische Zeitschrift f{\"u}r Textilchemie, Textilveredlung und deren Randgebiete}, volume = {23}, journal = {Textilveredlung : schweizerische Zeitschrift f{\"u}r Textilchemie, Textilveredlung und deren Randgebiete}, number = {9}, issn = {0040-5310}, pages = {304 -- 307}, year = {1988}, language = {de} } @article{MichalakNacerddinePietersenetal.2013, author = {Michalak, Ewa Malgorzata and Nacerddine, Karim and Pietersen, Alexandra and Beuger, Vincent and Pawlitzky, Inka and Cornelissen-Steijger, Paulien and Wientjens, Ellen and Tanger, Ellen and Seibler, Jost and Lohuizen, Maarten van and Jonkers, Jos}, title = {Polycomb group gene Ezh2 regulates mammary gland morphogenesis and maintains the luminal progenitor pool}, series = {Stem Cells}, volume = {Vol 31}, journal = {Stem Cells}, number = {9}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1549-4918}, doi = {10.1002/stem.1437}, pages = {1910 -- 1920}, year = {2013}, language = {en} } @article{MolinnusBaeckerSiegertetal.2015, author = {Molinnus, Denise and B{\"a}cker, Matthias and Siegert, Petra and Willenberg, H. and Poghossian, Arshak and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Detection of Adrenaline Based on Substrate Recycling Amplification}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.708}, pages = {540 -- 543}, year = {2015}, abstract = {An amperometric enzyme biosensor has been applied for the detection of adrenaline. The adrenaline biosensor has been prepared by modification of an oxygen electrode with the enzyme laccase that operates at a broad pH range between pH 3.5 to pH 8. The enzyme molecules were immobilized via cross-linking with glutaraldehyde. The sensitivity of the developed adrenaline biosensor in different pH buffer solutions has been studied.}, language = {en} } @article{MolinnusMuschallikGonzalezetal.2018, author = {Molinnus, Denise and Muschallik, Lukas and Gonzalez, Laura Osorio and Bongaerts, Johannes and Wagner, Torsten and Selmer, Thorsten and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development and characterization of a field-effect biosensor for the detection of acetoin}, series = {Biosensors and Bioelectronics}, volume = {115}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.bios.2018.05.023}, pages = {1 -- 6}, year = {2018}, abstract = {A capacitive electrolyte-insulator-semiconductor (EIS) field-effect biosensor for acetoin detection has been presented for the first time. The EIS sensor consists of a layer structure of Al/p-Si/SiO₂/Ta₂O₅/enzyme acetoin reductase. The enzyme, also referred to as butane-2,3-diol dehydrogenase from B. clausii DSM 8716T, has been recently characterized. The enzyme catalyzes the (R)-specific reduction of racemic acetoin to (R,R)- and meso-butane-2,3-diol, respectively. Two different enzyme immobilization strategies (cross-linking by using glutaraldehyde and adsorption) have been studied. Typical biosensor parameters such as optimal pH working range, sensitivity, hysteresis, linear concentration range and long-term stability have been examined by means of constant-capacitance (ConCap) mode measurements. Furthermore, preliminary experiments have been successfully carried out for the detection of acetoin in diluted white wine samples.}, language = {en} } @article{MolinnusSorichBartzetal.2016, author = {Molinnus, Denise and Sorich, Maren and Bartz, Alexander and Siegert, Petra and Willenberg, Holger S. and Lisdat, Fred and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Towards an adrenaline biosensor based on substrate recycling amplification in combination with an enzyme logic gate}, series = {Sensors and Actuators B: Chemical}, volume = {237}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.06.064}, pages = {190 -- 195}, year = {2016}, abstract = {An amperometric biosensor using a substrate recycling principle was realized for the detection of low adrenaline concentrations (1 nM) by measurements in phosphate buffer and Ringer's solution at pH 6.5 and pH 7.4, respectively. In proof-of-concept experiments, a Boolean logic-gate principle has been applied to develop a digital adrenaline biosensor based on an enzyme AND logic gate. The obtained results demonstrate that the developed digital biosensor is capable for a rapid qualitative determination of the presence/absence of adrenaline in a YES/NO statement. Such digital biosensor could be used in clinical diagnostics for the control of a correct insertion of a catheter in the adrenal veins during adrenal venous-sampling procedure.}, language = {en} } @article{MonakhovaDiehl2021, author = {Monakhova, Yulia and Diehl, Bernd W. K.}, title = {Simplification of NMR Workflows by Standardization Using 2H Integral of Deuterated Solvent as Applied to Aloe vera Preparations}, series = {Applied Magnetic Resonance}, volume = {52}, journal = {Applied Magnetic Resonance}, number = {11}, publisher = {Springer}, address = {Cham}, issn = {1613-7507}, doi = {10.1007/s00723-021-01393-4}, pages = {1591 -- 1600}, year = {2021}, abstract = {In this study, a recently proposed NMR standardization approach by 2H integral of deuterated solvent for quantitative multicomponent analysis of complex mixtures is presented. As a proof of principle, the existing NMR routine for the analysis of Aloe vera products was modified. Instead of using absolute integrals of targeted compounds and internal standard (nicotinamide) from 1H-NMR spectra, quantification was performed based on the ratio of a particular 1H-NMR compound integral and 2H-NMR signal of deuterated solvent D2O. Validation characteristics (linearity, repeatability, accuracy) were evaluated and the results showed that the method has the same precision as internal standardization in case of multicomponent screening. Moreover, a dehydration process by freeze drying is not necessary for the new routine. Now, our NMR profiling of A. vera products needs only limited sample preparation and data processing. The new standardization methodology provides an appealing alternative for multicomponent NMR screening. In general, this novel approach, using standardization by 2H integral, benefits from reduced sample preparation steps and uncertainties, and is recommended in different application areas (purity determination, forensics, pharmaceutical analysis, etc.).}, language = {en} }