@article{WiezorekBaumann1999, author = {Wiezorek, E. and Baumann, Marcus}, title = {Stadt{\"o}kologie in der Stadtplanung: der "Stadt{\"o}kologische Beitrag" Aachen}, series = {Wechselwirkung : Wissenschaft \& vernetztes Denken}, volume = {21}, journal = {Wechselwirkung : Wissenschaft \& vernetztes Denken}, number = {97}, issn = {0172-1623}, pages = {28 -- 37}, year = {1999}, language = {de} } @article{WilhelmBerndtBrandenburg1979, author = {Wilhelm, Wolff and Berndt, Heinz and Brandenburg, Dietrich}, title = {Zur Synthese der H{\"u}hnerinsulin-A-Kette, I : Darstellung der Fragmente A1-8, A9-15, A1-7 und A8-15}, series = {Hoppe-Seyler's Zeitschrift f{\"u}r physiologische Chemie}, volume = {360}, journal = {Hoppe-Seyler's Zeitschrift f{\"u}r physiologische Chemie}, number = {2}, issn = {1437-4315}, doi = {10.1515/bchm2.1979.360.2.1559}, pages = {1559 -- 1568}, year = {1979}, language = {de} } @article{WilmingBegemannKuhneetal.2013, author = {Wilming, Anja and Begemann, Jens and Kuhne, Stefan and Regestein, Lars and Bongaerts, Johannes and Evers, Stefan and Maurer, Karl-Heinz and B{\"u}chs, Jochen}, title = {Metabolic studies of γ-polyglutamic acid production in Bacillus licheniformis by small-scale continuous cultivations}, series = {Biochemical engineering journal}, volume = {Vol. 73}, journal = {Biochemical engineering journal}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-295X (E-Journal); 1369-703X (Print)}, pages = {29 -- 37}, year = {2013}, language = {en} } @article{WilsonDickieSchreiteretal.2018, author = {Wilson, C. E. and Dickie, A. P. and Schreiter, K. and Wehr, R. and Wilson, E. M. and Bial, J. and Scheer, Nico and Wilson, I. D. and Riley, R. J.}, title = {The pharmacokinetics and metabolism of diclofenac in chimeric humanized and murinized FRG mice}, series = {Archives of Toxicology}, volume = {92}, journal = {Archives of Toxicology}, number = {6}, publisher = {Springer}, issn = {1432-0738}, doi = {10.1007/s00204-018-2212-1}, pages = {1953 -- 1967}, year = {2018}, abstract = {The pharmacokinetics of diclofenac were investigated following single oral doses of 10 mg/kg to chimeric liver humanized and murinized FRG and C57BL/6 mice. In addition, the metabolism and excretion were investigated in chimeric liver humanized and murinized FRG mice. Diclofenac reached maximum blood concentrations of 2.43 ± 0.9 µg/mL (n = 3) at 0.25 h post-dose with an AUCinf of 3.67 µg h/mL and an effective half-life of 0.86 h (n = 2). In the murinized animals, maximum blood concentrations were determined as 3.86 ± 2.31 µg/mL at 0.25 h post-dose with an AUCinf of 4.94 ± 2.93 µg h/mL and a half-life of 0.52 ± 0.03 h (n = 3). In C57BL/6J mice, mean peak blood concentrations of 2.31 ± 0.53 µg/mL were seen 0.25 h post-dose with a mean AUCinf of 2.10 ± 0.49 µg h/mL and a half-life of 0.51 ± 0.49 h (n = 3). Analysis of blood indicated only trace quantities of drug-related material in chimeric humanized and murinized FRG mice. Metabolic profiling of urine, bile and faecal extracts revealed a complex pattern of metabolites for both humanized and murinized animals with, in addition to unchanged parent drug, a variety of hydroxylated and conjugated metabolites detected. The profiles in humanized mice were different to those of both murinized and wild-type animals, e.g., a higher proportion of the dose was detected in the form of acyl glucuronide metabolites and much reduced amounts as taurine conjugates. Comparison of the metabolic profiles obtained from the present study with previously published data from C57BL/6J mice and humans revealed a greater, though not complete, match between chimeric humanized mice and humans, such that the liver humanized FRG model may represent a model for assessing the biotransformation of such compounds in humans.}, language = {en} } @article{WilsonWilsonScheeretal.2017, author = {Wilson, Ian D. and Wilson, Claire E. and Scheer, Nico and Dickie, A.P. and Schreiter, K. and Wilson, E. M. and Riley, R. J. and Wehr, R. and Bial, J.}, title = {The Pharmacokinetics and Metabolism of Lumiracoxib in Chimeric Humanized and Murinized FRG Mice}, series = {Biochemical pharmacology}, volume = {Volume 135}, journal = {Biochemical pharmacology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-2968}, doi = {10.1016/j.bcp.2017.03.015}, pages = {139 -- 150}, year = {2017}, language = {en} } @article{WincklerKruegerSchnitzleretal.2014, author = {Winckler, Silvia and Krueger, Rolf and Schnitzler, Thomas and Zang, Werner and Fischer, Rainer and Biselli, Manfred}, title = {A sensitive monitoring system for mammalian cell cultivation processes: a PAT approach}, series = {Bioprocess and biosystems engineering}, volume = {37}, journal = {Bioprocess and biosystems engineering}, number = {5}, publisher = {Springer}, address = {Berlin, Heidelberg}, issn = {1615-7591 (Print) 1615-7605 (Online)}, doi = {10.1007/s00449-013-1062-8}, pages = {901 -- 912}, year = {2014}, abstract = {Biopharmaceuticals such as antibodies are produced in cultivated mammalian cells, which must be monitored to comply with good manufacturing practice. We, therefore, developed a fully automated system comprising a specific exhaust gas analyzer, inline analytics and a corresponding algorithm to precisely determine the oxygen uptake rate, carbon dioxide evolution rate, carbon dioxide transfer rate, transfer quotient and respiratory quotient without interrupting the ongoing cultivation, in order to assess its reproducibility. The system was verified using chemical simulation experiments and was able to measure the respiratory activity of hybridoma cells and DG44 cells (derived from Chinese hamster ovary cells) with satisfactory results at a minimum viable cell density of ~2.0 × 10⁵ cells ml⁻¹. The system was suitable for both batch and fed-batch cultivations in bubble-aerated and membrane-aerated reactors, with and without the control of pH and dissolved oxygen.}, language = {en} } @article{WissenbachSixBongaertsetal.1995, author = {Wissenbach, U. and Six, S. and Bongaerts, Johannes and Ternes, D. and Steinwachs, S. and Unden, G.}, title = {A third periplasmic transport system for l-arginine in Escherichia coli: molecular characterization of the artPIQMJ genes, arginine binding and transport}, series = {Molecular microbiology}, volume = {Vol. 17}, journal = {Molecular microbiology}, number = {Iss. 4}, issn = {1365-2958 (E-Journal); 0950-382x (Print)}, pages = {675 -- 686}, year = {1995}, language = {en} } @incollection{WolfKapelyukhScheeretal.2015, author = {Wolf, C. Roland and Kapelyukh, Yury and Scheer, Nico and Henderson, Colin J.}, title = {Application of Humanised and Other Transgenic Models to Predict Human Responses to Drugs}, editor = {Wilson, Alan G. E.}, publisher = {RSC Publ.}, address = {Cambridge}, isbn = {978-1-78262-778-4}, doi = {10.1039/9781782622376-00152}, pages = {152 -- 176}, year = {2015}, abstract = {The use of transgenic animal models has transformed our knowledge of complex biochemical pathways in vivo. It has allowed disease processes to be modelled and used in the development of new disease prevention and treatment strategies. They can also be used to define cell- and tissue-specific pathways of gene regulation. A further major application is in the area of preclinical development where such models can be used to define pathways of chemical toxicity, and the pathways that regulate drug disposition. One major application of this approach is the humanisation of mice for the proteins that control drug metabolism and disposition. Such models can have numerous applications in the development of drugs and in their more sophisticated use in the clinic.}, language = {en} } @article{WolfBerndtBrandenburg1979, author = {Wolf, G{\"u}nter and Berndt, Heinz and Brandenburg, Dietrich}, title = {Synthese der [LysA13] Rinderinsulin-A-Kette in der Form [Lys(Tfa)A13]A(SO3H)4 und NαA1-Msc-[LysA13]A(SO3H)4 unter Verwendung des S-tert-Butylmercapto-Restes als Thiolschutzgruppe}, series = {Hoppe-Seyler's Zeitschrift f{\"u}r physiologische Chemie}, volume = {360}, journal = {Hoppe-Seyler's Zeitschrift f{\"u}r physiologische Chemie}, number = {2}, issn = {1437-4315}, doi = {10.1515/bchm2.1979.360.2.1569}, pages = {1569 -- 1578}, year = {1979}, language = {de} } @article{WolfBerndtBrandenburg1979, author = {Wolf, Wilhelm and Berndt, Heinz and Brandenburg, Dietrich}, title = {Synthese von Fragmenten einer [LysA13] Rinder-Insulin-A-Kette unter Verwendung des S-tert-Butylmercaptorestes als Thiolschutz}, series = {Hoppe-Seyler's Zeitschrift f{\"u}r physiologische Chemie}, volume = {360}, journal = {Hoppe-Seyler's Zeitschrift f{\"u}r physiologische Chemie}, number = {2}, issn = {1437-4315}, doi = {10.1515/bchm2.1979.360.2.1549}, pages = {1549 -- 1558}, year = {1979}, language = {de} }