@article{CornelisGivanoudiYongabietal.2019, author = {Cornelis, Peter and Givanoudi, Stella and Yongabi, Derick and Iken, Heiko and Duw{\´e}, Sam and Deschaume, Olivier and Robbens, Johan and Dedecker, Peter and Bartic, Carmen and W{\"u}bbenhorst, Michael and Sch{\"o}ning, Michael Josef and Heyndrickx, Marc and Wagner, Patrick}, title = {Sensitive and specific detection of E. coli using biomimetic receptors in combination with a modified heat-transfer method}, series = {Biosensors and Bioelectronics}, volume = {136}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2019.04.026}, pages = {97 -- 105}, year = {2019}, language = {en} } @incollection{DachwaldOhndorf2019, author = {Dachwald, Bernd and Ohndorf, Andreas}, title = {Global optimization of continuous-thrust trajectories using evolutionary neurocontrol}, series = {Modeling and Optimization in Space Engineering}, booktitle = {Modeling and Optimization in Space Engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-10501-3}, doi = {10.1007/978-3-030-10501-3_2}, pages = {33 -- 57}, year = {2019}, abstract = {Searching optimal continuous-thrust trajectories is usually a difficult and time-consuming task. The solution quality of traditional optimal-control methods depends strongly on an adequate initial guess because the solution is typically close to the initial guess, which may be far from the (unknown) global optimum. Evolutionary neurocontrol attacks continuous-thrust optimization problems from the perspective of artificial intelligence and machine learning, combining artificial neural networks and evolutionary algorithms. This chapter describes the method and shows some example results for single- and multi-phase continuous-thrust trajectory optimization problems to assess its performance. Evolutionary neurocontrol can explore the trajectory search space more exhaustively than a human expert can do with traditional optimal-control methods. Especially for difficult problems, it usually finds solutions that are closer to the global optimum. Another fundamental advantage is that continuous-thrust trajectories can be optimized without an initial guess and without expert supervision.}, language = {en} } @article{DantismRoehlenSelmeretal.2019, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Selmer, Thorsten and Wagner, Torsten and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Quantitative differential monitoring of the metabolic activity of Corynebacterium glutamicum cultures utilizing a light-addressable potentiometric sensor system}, series = {Biosensors and Bioelectronics}, volume = {139}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.bios.2019.111332}, pages = {Artikel 111332}, year = {2019}, language = {en} } @article{DantismRoehlenWagneretal.2019, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Wagner, Torsten and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {A LAPS-based differential sensor for parallelized metabolism monitoring of various bacteria}, series = {Sensors}, volume = {19}, journal = {Sensors}, number = {21}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s19214692}, pages = {Artikel 4692}, year = {2019}, abstract = {Monitoring the cellular metabolism of bacteria in (bio)fermentation processes is crucial to control and steer them, and to prevent undesired disturbances linked to metabolically inactive microorganisms. In this context, cell-based biosensors can play an important role to improve the quality and increase the yield of such processes. This work describes the simultaneous analysis of the metabolic behavior of three different types of bacteria by means of a differential light-addressable potentiometric sensor (LAPS) set-up. The study includes Lactobacillus brevis, Corynebacterium glutamicum, and Escherichia coli, which are often applied in fermentation processes in bioreactors. Differential measurements were carried out to compensate undesirable influences such as sensor signal drift, and pH value variation during the measurements. Furthermore, calibration curves of the cellular metabolism were established as a function of the glucose concentration or cell number variation with all three model microorganisms. In this context, simultaneous (bio)sensing with the multi-organism LAPS-based set-up can open new possibilities for a cost-effective, rapid detection of the extracellular acidification of bacteria on a single sensor chip. It can be applied to evaluate the metabolic response of bacteria populations in a (bio)fermentation process, for instance, in the biogas fermentation process.}, language = {en} } @article{Delaittre2019, author = {Delaittre, Guillaume}, title = {Telechelic Poly(2-Oxazoline)s}, series = {European Polymer Journal}, journal = {European Polymer Journal}, number = {In Press, Journal Pre-proof, 109281}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2019.109281}, year = {2019}, language = {en} } @article{DotzauerPfeifferLaueretal.2019, author = {Dotzauer, Martin and Pfeiffer, Diana and Lauer, Markus and Pohl, Marcel and Mauky, Eric and B{\"a}r, Katharina and Sonnleitner, Matthias and Z{\"o}rner, Wilfried and Hudde, Jessica and Schwarz, Bj{\"o}rn and Faßauer, Burkhardt and Dahmen, Markus and Rieke, Christian and Herbert, Johannes and Thr{\"a}n, Daniela}, title = {How to measure flexibility - Performance indicators for demand driven power generation from biogas plants}, series = {Renewable Energy}, journal = {Renewable Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0960-1481}, doi = {10.1016/j.renene.2018.10.021}, pages = {135 -- 146}, year = {2019}, language = {en} } @inproceedings{Eggert2019, author = {Eggert, Mathias}, title = {Understanding the acceptance of smart home-based insurances}, series = {Proceedings of the 27th European Conference on Information Systems (ECIS), Stockholm \& Uppsala, Sweden, June 8-14, 2019}, booktitle = {Proceedings of the 27th European Conference on Information Systems (ECIS), Stockholm \& Uppsala, Sweden, June 8-14, 2019}, isbn = {978-1-7336325-0-8}, pages = {1 -- 15}, year = {2019}, language = {en} } @incollection{Eggert2019, author = {Eggert, Mathias}, title = {Big Data Research - How to Structure the Changes of the Past Decade?}, series = {The Art of Structuring}, booktitle = {The Art of Structuring}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-06234-7}, doi = {10.1007/978-3-030-06234-7_26}, pages = {271 -- 281}, year = {2019}, abstract = {In the past decade, many IS researchers focused on researching the phenomenon of Big Data. At the same time, the relevance of data protection gets more attention than ever before. In particular, since the enactment of the European General Data Protection Regulation in May 2018 Information Systems research should provide answers for protecting personal data. The article at hand presents a structuring framework for Big Data research outcome and the consideration of data protection. IS Researchers might use the framework in order to structure Big Data literature and to identify research gaps that should be addressed in the future.}, language = {en} } @inproceedings{EichlerSkupinThurnetal.2019, author = {Eichler, Fabian and Skupin, Marco and Thurn, Laura and Kasch, Susanne and Schmidt, Thomas}, title = {Operating limits for beam melting of glass materials}, series = {Modern Technologies in Manufacturing (MTeM 2019)}, volume = {299}, booktitle = {Modern Technologies in Manufacturing (MTeM 2019)}, number = {Article 01004}, doi = {10.1051/matecconf/201929901004}, pages = {8 Seiten}, year = {2019}, abstract = {Laser-based Additive Manufacturing (AM) processes for the use of metals out of the powder bed have been investigated profusely and are prevalent in industry. Although there is a broad field of application, Laser Powder Bed Fusion (LPBF), also known as Selective Laser Melting (SLM) of glass is not fully developed yet. The material properties of glass are significantly different from the investigated metallic material for LPBF so far. As such, the process cannot be transferred, and the parameter limits and the process sequence must be redefined for glass. Starting with the characterization of glass powders, a parameter field is initially confined to investigate the process parameter of different glass powder using LPBFprocess. A feasibility study is carried out to process borosilicate glass powder. The effects of process parameters on the dimensional accuracy of fabricated parts out of borosilicate and hints for the post-processing are analysed and presented in this paper.}, language = {en} } @article{EngelBayerHoltmannetal.2019, author = {Engel, Mareike and Bayer, Hendrik and Holtmann, Dirk and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Flavin secretion of Clostridium acetobutylicum in a bioelectrochemical system - Is an iron limitation involved?}, series = {Bioelectrochemistry}, journal = {Bioelectrochemistry}, number = {In Press, Accepted Manuscript}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1567-5394}, doi = {10.1016/j.bioelechem.2019.05.014}, year = {2019}, language = {en} }