@article{LeipoldFichtnerHeberetal.2006, author = {Leipold, M. and Fichtner, H. and Heber, B. and Groepper, P. and Lascar, S. and Burger, F. and Eiden, M. and Niederstadt, T. and Sickinger, C. and Herbeck, L. and Dachwald, Bernd and Seboldt, W.}, title = {Heliopause Explorer - A Sailcraft Mission to the Outer Boundaries of the Solar System}, series = {Acta Astronautica. 59 (2006), H. 8-11}, journal = {Acta Astronautica. 59 (2006), H. 8-11}, isbn = {0094-5765}, pages = {786 -- 796}, year = {2006}, language = {en} } @article{LeimenaArtmannDachwaldetal.2010, author = {Leimena, W. and Artmann, Gerhard and Dachwald, Bernd and Temiz Artmann, Ayseg{\"u}l and Gossmann, Matthias and Digel, Ilya}, title = {Feasibility of an in-situ microbial decontamination of an ice-melting probe}, series = {Eurasian Chemico-Technological Journal. 12 (2010), H. 2}, journal = {Eurasian Chemico-Technological Journal. 12 (2010), H. 2}, isbn = {1562-3920}, pages = {145 -- 150}, year = {2010}, language = {en} } @article{KraemerDaabMuelleretal.2013, author = {Kr{\"a}mer, Stefan and Daab, Dominique Jonas and M{\"u}ller, Brigitte and Wagner, Tobias and Baader, Fabian and Hessel, Joana and Gdalewitsch, Georg and Plescher, Engelbert and Dachwald, Bernd and Wahle, Michael and Gierse, Andreas and Vetter, Rudolf and Pf{\"u}tzenreuter, Lysan}, title = {Development and flight-testing of a system to isolate vibrations for microgravity experiments on sounding rockets}, series = {21st ESA Symposium on Rocket and Balloon Research}, journal = {21st ESA Symposium on Rocket and Balloon Research}, pages = {1 -- 8}, year = {2013}, language = {en} } @article{KowalskiLinderZierkeetal.2016, author = {Kowalski, Julia and Linder, Peter and Zierke, S. and Wulfen, B. van and Clemens, J. and Konstantinidis, K. and Ameres, G. and Hoffmann, R. and Mikucki, J. and Tulaczyk, S. and Funke, O. and Blandfort, D. and Espe, Clemens and Feldmann, Marco and Francke, Gero and Hiecker, S. and Plescher, Engelbert and Sch{\"o}ngarth, Sarah and Dachwald, Bernd and Digel, Ilya and Artmann, Gerhard and Eliseev, D. and Heinen, D. and Scholz, F. and Wiebusch, C. and Macht, S. and Bestmann, U. and Reineking, T. and Zetzsche, C. and Schill, K. and F{\"o}rstner, R. and Niedermeier, H. and Szumski, A. and Eissfeller, B. and Naumann, U. and Helbing, K.}, title = {Navigation technology for exploration of glacier ice with maneuverable melting probes}, series = {Cold Regions Science and Technology}, journal = {Cold Regions Science and Technology}, number = {123}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0165-232X}, doi = {10.1016/j.coldregions.2015.11.006}, pages = {53 -- 70}, year = {2016}, abstract = {The Saturnian moon Enceladus with its extensive water bodies underneath a thick ice sheet cover is a potential candidate for extraterrestrial life. Direct exploration of such extraterrestrial aquatic ecosystems requires advanced access and sampling technologies with a high level of autonomy. A new technological approach has been developed as part of the collaborative research project Enceladus Explorer (EnEx). The concept is based upon a minimally invasive melting probe called the IceMole. The force-regulated, heater-controlled IceMole is able to travel along a curved trajectory as well as upwards. Hence, it allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. The development of such a navigational system has been the focal part of the EnEx project. The original IceMole has been further developed to include relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection integrated through a high-level sensor fusion. This paper describes the EnEx technology and discusses implications for an actual extraterrestrial mission concept.}, language = {en} } @article{KonstantinidisFloresMartinezDachwaldetal.2015, author = {Konstantinidis, Konstantinos and Flores Martinez, Claudio and Dachwald, Bernd and Ohndorf, Andreas and Dykta, Paul and Bowitz, Pascal and Rudolph, Martin and Digel, Ilya and Kowalski, Julia and Voigt, Konstantin and F{\"o}rstner, Roger}, title = {A lander mission to probe subglacial water on Saturn's moon enceladus for life}, series = {Acta astronautica}, volume = {Vol. 106}, journal = {Acta astronautica}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1879-2030 (E-Journal); 0094-5765 (Print)}, pages = {63 -- 89}, year = {2015}, language = {en} } @article{KezerashviliDachwald2021, author = {Kezerashvili, Roman Ya and Dachwald, Bernd}, title = {Preface: Solar sailing: Concepts, technology, and missions II}, series = {Advances in Space Research}, volume = {67}, journal = {Advances in Space Research}, number = {9}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2021.01.037}, pages = {2559 -- 2560}, year = {2021}, language = {en} } @article{JanThimoBauerBieleetal.2019, author = {Jan Thimo, Grundmann and Bauer, Waldemar and Biele, Jens and Boden, Ralf and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Hercik, David}, title = {Capabilities of Gossamer-1 derived small spacecraft solar sails carrying Mascot-derived nanolanders for in-situ surveying of NEAs}, series = {Acta Astronautica}, volume = {156}, journal = {Acta Astronautica}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0094-5765}, doi = {10.1016/j.actaastro.2018.03.019}, pages = {330 -- 362}, year = {2019}, language = {en} } @article{HeinEubanksLingametal.2022, author = {Hein, Andreas M. and Eubanks, T. Marshall and Lingam, Manasvi and Hibberd, Adam and Fries, Dan and Schneider, Jean and Kervella, Pierre and Kennedy, Robert and Perakis, Nikolaos and Dachwald, Bernd}, title = {Interstellar now! Missions to explore nearby interstellar objects}, series = {Advances in Space Research}, volume = {69}, journal = {Advances in Space Research}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2021.06.052}, pages = {402 -- 414}, year = {2022}, abstract = {The recently discovered first hyperbolic objects passing through the Solar System, 1I/'Oumuamua and 2I/Borisov, have raised the question about near term missions to Interstellar Objects. In situ spacecraft exploration of these objects will allow the direct determination of both their structure and their chemical and isotopic composition, enabling an entirely new way of studying small bodies from outside our solar system. In this paper, we map various Interstellar Object classes to mission types, demonstrating that missions to a range of Interstellar Object classes are feasible, using existing or near-term technology. We describe flyby, rendezvous and sample return missions to interstellar objects, showing various ways to explore these bodies characterizing their surface, dynamics, structure and composition. Their direct exploration will constrain their formation and history, situating them within the dynamical and chemical evolution of the Galaxy. These mission types also provide the opportunity to explore solar system bodies and perform measurements in the far outer solar system.}, language = {en} } @article{HeinEubanksHibberdetal.2020, author = {Hein, Andreas M. and Eubanks, T. Marshall and Hibberd, Adam and Fries, Dan and Schneider, Jean and Lingam, Manasvi and Kennedy, Robert and Perakis, Nikolaos and Dachwald, Bernd and Kervella, Pierre}, title = {Interstellar Now! Missions to and sample returns from nearby interstellar objects}, publisher = {Elsevier}, address = {Amsterdam}, pages = {1 -- 8}, year = {2020}, abstract = {The recently discovered first high velocity hyperbolic objects passing through the Solar System, 1I/'Oumuamua and 2I/Borisov, have raised the question about near term missions to Interstellar Objects. In situ spacecraft exploration of these objects will allow the direct determination of both their structure and their chemical and isotopic composition, enabling an entirely new way of studying small bodies from outside our solar system. In this paper, we map various Interstellar Object classes to mission types, demonstrating that missions to a range of Interstellar Object classes are feasible, using existing or near-term technology. We describe flyby, rendezvous and sample return missions to interstellar objects, showing various ways to explore these bodies characterizing their surface, dynamics, structure and composition. Interstellar objects likely formed very far from the solar system in both time and space; their direct exploration will constrain their formation and history, situating them within the dynamical and chemical evolution of the Galaxy. These mission types also provide the opportunity to explore solar system bodies and perform measurements in the far outer solar system.}, language = {en} } @article{HeiligersSchoutetensDachwald2021, author = {Heiligers, Jeannette and Schoutetens, Frederic and Dachwald, Bernd}, title = {Photon-sail equilibria in the alpha centauri system}, series = {Journal of Guidance, Control, and Dynamics}, volume = {44}, journal = {Journal of Guidance, Control, and Dynamics}, number = {5}, issn = {1533-3884}, doi = {10.2514/1.G005446}, pages = {1053 -- 1061}, year = {2021}, language = {en} }