@article{Gerhardt2005, author = {Gerhardt, Hans Joachim}, title = {Teures Bauen durch starre Genehmigungspraxis}, series = {Der Bausachverst{\"a}ndige : Zeitschrift f{\"u}r Bausch{\"a}den, Grundst{\"u}ckswert und gutachterliche T{\"a}tigkeit. 1 (2005), H. 5}, journal = {Der Bausachverst{\"a}ndige : Zeitschrift f{\"u}r Bausch{\"a}den, Grundst{\"u}ckswert und gutachterliche T{\"a}tigkeit. 1 (2005), H. 5}, isbn = {1614-6123}, pages = {44 -- 45}, year = {2005}, language = {de} } @article{Gerhardt2005, author = {Gerhardt, Hans Joachim}, title = {Physikalische Modelle f{\"u}r Brandsicherheitsnachweise = physical models for fire safety design}, series = {Kurzreferate : Hannover, 6. und 7. Juni 2005 = Proceedings / [Veranst.: VFDB, Vereinigung zur F{\"o}rderung des Deutschen Brandschutzes e.V.; iBMB, Institut f{\"u}r Baustoffe, Massivbau und Brandschutz der Technischen Universit{\"a}t Braunschweig]. Hrsg.: Dietmar Hosser}, journal = {Kurzreferate : Hannover, 6. und 7. Juni 2005 = Proceedings / [Veranst.: VFDB, Vereinigung zur F{\"o}rderung des Deutschen Brandschutzes e.V.; iBMB, Institut f{\"u}r Baustoffe, Massivbau und Brandschutz der Technischen Universit{\"a}t Braunschweig]. Hrsg.: Dietmar Hosser}, publisher = {iBMB}, address = {Braunschweig}, isbn = {3-89288-165-0}, pages = {135 -- 154}, year = {2005}, language = {de} } @article{GenzKingWahle1992, author = {Genz, M. and King, H. and Wahle, Michael}, title = {Mikrozellige Polyurethan-Elastomere als Federelement in Automobilanwendungen}, series = {Automobiltechnische Zeitschrift ; ATZ}, volume = {94}, journal = {Automobiltechnische Zeitschrift ; ATZ}, number = {10}, issn = {0001-2785}, pages = {512 -- 520}, year = {1992}, language = {de} } @article{GazdaMaurischat2020, author = {Gazda, Quentin and Maurischat, Andreas}, title = {Special functions and Gauss-Thakur sums in higher rank and dimension}, publisher = {De Gruyter}, address = {Berlin}, pages = {26 Seiten}, year = {2020}, language = {en} } @article{FunkeRoennaRobinson2008, author = {Funke, Harald and R{\"o}nna, Uwe and Robinson, A. E.}, title = {Development and testing of a 10 kW diffusive micromix combustor for hydrogen-fuelled μ-scale gas turbines}, series = {Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air ; GT2008 ; June 9-13, 2008, Berlin, Germany}, journal = {Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air ; GT2008 ; June 9-13, 2008, Berlin, Germany}, publisher = {ASME}, address = {New York, NY}, pages = {1 -- 8}, year = {2008}, language = {en} } @article{FunkeRobinsonHendricketal.2010, author = {Funke, Harald and Robinson, A. E. and Hendrick, P. and Wagemakers, R.}, title = {Design and Testing of a Micromix Combustor With Recuperative Wall Cooling for a Hydrogen Fuelled µ-Scale Gas Turbine}, series = {Proceedings of the ASME Turbo Expo 2010 : presented at the 2010 ASME Turbo Expo, June 14 - 18, 2010, Glasgow, UK / sponsored by the International Gas Turbine Institute / Vol. 5: Industrial and cogeneration ; microturbines and small turbomachinery ; oil and gas applications ; wind turbine technology}, journal = {Proceedings of the ASME Turbo Expo 2010 : presented at the 2010 ASME Turbo Expo, June 14 - 18, 2010, Glasgow, UK / sponsored by the International Gas Turbine Institute / Vol. 5: Industrial and cogeneration ; microturbines and small turbomachinery ; oil and gas applications ; wind turbine technology}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-4400-7}, pages = {587 -- 596}, year = {2010}, language = {en} } @article{FunkeRobinson2007, author = {Funke, Harald and Robinson, A. E.}, title = {Development of a new test rig for a micro scale hydrogen combustion chamber}, series = {Proceedings of the 2nd European Conference for Aero-Space Sciences : July 1 - 6, 2007, Brussels, Belgium}, journal = {Proceedings of the 2nd European Conference for Aero-Space Sciences : July 1 - 6, 2007, Brussels, Belgium}, publisher = {-}, pages = {1 -- 8}, year = {2007}, language = {en} } @article{FunkeReckerBosschaertsetal.2011, author = {Funke, Harald and Recker, E. and Bosschaerts, W. and Boonen, Q. and B{\"o}rner, Sebastian}, title = {Parametrical study of the „Micromix" hydrogen combustion principle}, series = {10th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, ISAIF10-049, Brussels, Belgium, 4-7 July 2011}, journal = {10th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, ISAIF10-049, Brussels, Belgium, 4-7 July 2011}, year = {2011}, language = {en} } @article{FunkeKeinzKustereretal.2016, author = {Funke, Harald and Keinz, Jan and Kusterer, Karsten and Ayed, Anis Haj and Kazari, Masahide and Kitajima, Junichi and Horikawa, Atsushi and Okada, Kunio}, title = {Experimental and Numerical Study on Optimizing the Dry Low NOₓ Micromix Hydrogen Combustion Principle for Industrial Gas Turbine Applications}, series = {Journal of Thermal Science and Engineering Applications}, volume = {9}, journal = {Journal of Thermal Science and Engineering Applications}, number = {2}, publisher = {ASME}, address = {New York, NY}, issn = {1948-5093}, doi = {10.1115/1.4034849}, pages = {021001 -- 021001-10}, year = {2016}, abstract = {Combined with the use of renewable energy sources for its production, hydrogen represents a possible alternative gas turbine fuel for future low-emission power generation. Due to the difference in the physical properties of hydrogen compared to other fuels such as natural gas, well-established gas turbine combustion systems cannot be directly applied to dry low NOₓ (DLN) hydrogen combustion. The DLN micromix combustion of hydrogen has been under development for many years, since it has the promise to significantly reduce NOₓ emissions. This combustion principle for air-breathing engines is based on crossflow mixing of air and gaseous hydrogen. Air and hydrogen react in multiple miniaturized diffusion-type flames with an inherent safety against flashback and with low NOₓ emissions due to a very short residence time of the reactants in the flame region. The paper presents an advanced DLN micromix hydrogen application. The experimental and numerical study shows a combustor configuration with a significantly reduced number of enlarged fuel injectors with high-thermal power output at constant energy density. Larger fuel injectors reduce manufacturing costs, are more robust and less sensitive to fuel contamination and blockage in industrial environments. The experimental and numerical results confirm the successful application of high-energy injectors, while the DLN micromix characteristics of the design point, under part-load conditions, and under off-design operation are maintained. Atmospheric test rig data on NOₓ emissions, optical flame-structure, and combustor material temperatures are compared to numerical simulations and show good agreement. The impact of the applied scaling and design laws on the miniaturized micromix flamelets is particularly investigated numerically for the resulting flow field, the flame-structure, and NOₓ formation.}, language = {en} } @article{FunkeKeinzKustereretal.2017, author = {Funke, Harald and Keinz, Jan and Kusterer, K. and Haj Ayed, A. and Kazari, M. and Kitajima, J. and Horikawa, A. and Okada, K.}, title = {Development and Testing of a Low NOX Micromix Combustion Chamber for an Industrial Gas Turbine}, series = {International Journal of Gas Turbine, Propulsion and Power Systems}, volume = {9}, journal = {International Journal of Gas Turbine, Propulsion and Power Systems}, number = {1}, issn = {1882-5079}, doi = {10.38036/jgpp.9.1_27}, pages = {27 -- 36}, year = {2017}, abstract = {The Micromix combustion principle, based on cross-flow mixing of air and hydrogen, promises low emission applications in future gas turbines. The Micromix combustion takes place in several hundreds of miniaturized diffusion-type micro-flames. The major advantage is the inherent safety against flash-back and low NOx-emissions due to a very short residence time of reactants in the flame region. The paper gives insight into the Micromix design and scaling procedure for different energy densities and the interaction of scaling laws and key design drivers in gas turbine integration. Numerical studies, experimental testing, gas turbine integration and interface considerations are evaluated. The aerodynamic stabilization of the miniaturized flamelets and the resulting flow field, flame structure and NOx formation are analysed experimentally and numerically. The results show and confirm the successful adaption of the low NOx Micromix characteristics for a range of different nozzle sizes, energy densities and thermal power output.}, language = {de} }