@article{SattlerRoegerSchwarzboezletal.2020, author = {Sattler, Johannes Christoph and R{\"o}ger, Marc and Schwarzb{\"o}zl, Peter and Buck, Reiner and Macke, Ansgar and Raeder, Christian and G{\"o}ttsche, Joachim}, title = {Review of heliostat calibration and tracking control methods}, series = {Solar Energy}, volume = {207}, journal = {Solar Energy}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.solener.2020.06.030}, pages = {110 -- 132}, year = {2020}, abstract = {Large scale central receiver systems typically deploy between thousands to more than a hundred thousand heliostats. During solar operation, each heliostat is aligned individually in such a way that the overall surface normal bisects the angle between the sun's position and the aim point coordinate on the receiver. Due to various tracking error sources, achieving accurate alignment ≤1 mrad for all the heliostats with respect to the aim points on the receiver without a calibration system can be regarded as unrealistic. Therefore, a calibration system is necessary not only to improve the aiming accuracy for achieving desired flux distributions but also to reduce or eliminate spillage. An overview of current larger-scale central receiver systems (CRS), tracking error sources and the basic requirements of an ideal calibration system is presented. Leading up to the main topic, a description of general and specific terms on the topics heliostat calibration and tracking control clarifies the terminology used in this work. Various figures illustrate the signal flows along various typical components as well as the corresponding monitoring or measuring devices that indicate or measure along the signal (or effect) chain. The numerous calibration systems are described in detail and classified in groups. Two tables allow the juxtaposition of the calibration methods for a better comparison. In an assessment, the advantages and disadvantages of individual calibration methods are presented.}, language = {en} } @inproceedings{SattlerChicoCaminosUerlingsetal.2020, author = {Sattler, Johannes Christoph and Chico Caminos, Ricardo Alexander and {\"U}rlings, Nicolas and Dutta, Siddharth and Ruiz, Victor and Kalogirou, Soteris and Ktistis, Panayiotis and Agathokleous, Rafaela and Jung, Christian and Alexopoulos, Spiros and Atti, Vikrama Naga Babu and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Operational experience and behaviour of a parabolic trough collector system with concrete thermal energy storage for process steam generation in Cyprus}, series = {AIP Conference Proceedings}, booktitle = {AIP Conference Proceedings}, number = {2303}, doi = {10.1063/5.0029278}, pages = {140004-1 -- 140004-10}, year = {2020}, abstract = {As part of the transnational research project EDITOR, a parabolic trough collector system (PTC) with concrete thermal energy storage (C-TES) was installed and commissioned in Limassol, Cyprus. The system is located on the premises of the beverage manufacturer KEAN Soft Drinks Ltd. and its function is to supply process steam for the factory's pasteurisation process [1]. Depending on the factory's seasonally varying capacity for beverage production, the solar system delivers between 5 and 25 \% of the total steam demand. In combination with the C-TES, the solar plant can supply process steam on demand before sunrise or after sunset. Furthermore, the C-TES compensates the PTC during the day in fluctuating weather conditions. The parabolic trough collector as well as the control and oil handling unit is designed and manufactured by Protarget AG, Germany. The C-TES is designed and produced by CADE Soluciones de Ingenier{\´i}a, S.L., Spain. In the focus of this paper is the description of the operational experience with the PTC, C-TES and boiler during the commissioning and operation phase. Additionally, innovative optimisation measures are presented.}, language = {en} } @inproceedings{SattlerChicoCaminosAttietal.2020, author = {Sattler, Johannes Christoph and Chico Caminos, Ricardo Alexander and Atti, Vikrama Naga Babu and {\"U}rlings, Nicolas and Dutta, Siddharth and Ruiz, Victor and Kalogirou, Soteris and Ktistis, Panayiotis and Agathokleous, Rafaela and Alexopoulos, Spiros and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Dynamic simulation tool for a performance evaluation and sensitivity study of a parabolic trough collector system with concrete thermal energy storage}, series = {AIP Conference Proceedings 2303}, booktitle = {AIP Conference Proceedings 2303}, publisher = {American Institute of Physics}, address = {Melville, NY}, issn = {0094-243X}, doi = {10.1063/5.0029277}, pages = {160004}, year = {2020}, language = {de} } @article{RuppRiekeHandschuhetal.2020, author = {Rupp, Matthias and Rieke, Christian and Handschuh, Nils and Kuperjans, Isabel}, title = {Economic and ecological optimization of electric bus charging considering variable electricity prices and CO₂eq intensities}, series = {Transportation Research Part D: Transport and Environment}, volume = {81}, journal = {Transportation Research Part D: Transport and Environment}, number = {Article 102293}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1361-9209}, doi = {10.1016/j.trd.2020.102293}, year = {2020}, abstract = {In many cities, diesel buses are being replaced by electric buses with the aim of reducing local emissions and thus improving air quality. The protection of the environment and the health of the population is the highest priority of our society. For the transport companies that operate these buses, not only ecological issues but also economic issues are of great importance. Due to the high purchase costs of electric buses compared to conventional buses, operators are forced to use electric vehicles in a targeted manner in order to ensure amortization over the service life of the vehicles. A compromise between ecology and economy must be found in order to both protect the environment and ensure economical operation of the buses. In this study, we present a new methodology for optimizing the vehicles' charging time as a function of the parameters CO₂eq emissions and electricity costs. Based on recorded driving profiles in daily bus operation, the energy demands of conventional and electric buses are calculated for the passenger transportation in the city of Aachen in 2017. Different charging scenarios are defined to analyze the influence of the temporal variability of CO₂eq intensity and electricity price on the environmental impact and economy of the bus. For every individual day of a year, charging periods with the lowest and highest costs and emissions are identified and recommendations for daily bus operation are made. To enable both the ecological and economical operation of the bus, the parameters of electricity price and CO₂ are weighted differently, and several charging periods are proposed, taking into account the priorities previously set. A sensitivity analysis is carried out to evaluate the influence of selected parameters and to derive recommendations for improving the ecological and economic balance of the battery-powered electric vehicle. In all scenarios, the optimization of the charging period results in energy cost savings of a maximum of 13.6\% compared to charging at a fixed electricity price. The savings potential of CO₂eq emissions is similar, at 14.9\%. From an economic point of view, charging between 2 a.m. and 4 a.m. results in the lowest energy costs on average. The CO₂eq intensity is also low in this period, but midday charging leads to the largest savings in CO₂eq emissions. From a life cycle perspective, the electric bus is not economically competitive with the conventional bus. However, from an ecological point of view, the electric bus saves on average 37.5\% CO₂eq emissions over its service life compared to the diesel bus. The reduction potential is maximized if the electric vehicle exclusively consumes electricity from solar and wind power.}, language = {en} } @article{RoepkeKoehlerDruryetal.2020, author = {Roepke, Rene and K{\"o}hler, Klemens and Drury, Vincent and Schroeder, Ulrik and Wolf, Martin R. and Meyer, Ulrike}, title = {A pond full of phishing games - analysis of learning games for anti-phishing education}, series = {Model-driven Simulation and Training Environments for Cybersecurity. MSTEC 2020}, journal = {Model-driven Simulation and Training Environments for Cybersecurity. MSTEC 2020}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-62433-0}, doi = {10.1007/978-3-030-62433-0_32020}, pages = {41 -- 60}, year = {2020}, abstract = {Game-based learning is a promising approach to anti-phishing education, as it fosters motivation and can help reduce the perceived difficulty of the educational material. Over the years, several prototypes for game-based applications have been proposed, that follow different approaches in content selection, presentation, and game mechanics. In this paper, a literature and product review of existing learning games is presented. Based on research papers and accessible applications, an in-depth analysis was conducted, encompassing target groups, educational contexts, learning goals based on Bloom's Revised Taxonomy, and learning content. As a result of this review, we created the publications on games (POG) data set for the domain of anti-phishing education. While there are games that can convey factual and conceptual knowledge, we find that most games are either unavailable, fail to convey procedural knowledge or lack technical depth. Thus, we identify potential areas of improvement for games suitable for end-users in informal learning contexts.}, language = {en} } @article{RichterWichernGroempingetal.2020, author = {Richter, L. and Wichern, M. and Gr{\"o}mping, Markus and Robecke, U. and Haberkamp, J.}, title = {Ammonium recovery from process water of digested sludge dewatering by membrane contactors}, series = {Water Practice and Technology}, volume = {15}, journal = {Water Practice and Technology}, number = {1}, publisher = {IWA Publishing}, address = {London}, issn = {1751-231X}, doi = {10.2166/wpt.2020.002}, pages = {84 -- 91}, year = {2020}, abstract = {Membrane contactors are a promising alternative for nitrogen removal and recovery from process water compared to other physicochemical and biological sidestream treatment processes. M{\"u}nster wastewater treatment plant (WWTP) is the first municipal WWTP in Germany operating a full-scale membrane contactor system to improve the nitrogen elimination and recovery efficiency. Factors influencing the operation and membrane performance are investigated in an accompanying research project. Additional operational aspects of the applied membrane modules are investigated in detail using a bench-scale membrane contactor. First results of the full-scale application demonstrate a high nitrogen removal efficiency of >95\%.}, language = {de} } @inproceedings{RendonSchwagerGhiasietal.2020, author = {Rendon, Carlos and Schwager, Christian and Ghiasi, Mona and Schmitz, Pascal and Bohang, Fakhri and Chico Caminos, Ricardo Alexander and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Modeling and upscaling of a pilot bayonettube reactor for indirect solar mixed methane reforming}, series = {AIP Conference Proceedings}, booktitle = {AIP Conference Proceedings}, number = {2303}, doi = {10.1063/5.0029974}, pages = {170012-1 -- 170012-9}, year = {2020}, abstract = {A 16.77 kW thermal power bayonet-tube reactor for the mixed reforming of methane using solar energy has been designed and modeled. A test bench for the experimental tests has been installed at the Synlight facility in Juelich, Germany and has just been commissioned. This paper presents the solar-heated reactor design for a combined steam and dry reforming as well as a scaled-up process simulation of a solar reforming plant for methanol production. Solar power towers are capable of providing large amounts of heat to drive high-endothermic reactions, and their integration with thermochemical processes shows a promising future. In the designed bayonet-tube reactor, the conventional burner arrangement for the combustion of natural gas has been substituted by a continuous 930 °C hot air stream, provided by means of a solar heated air receiver, a ceramic thermal storage and an auxiliary firing system. Inside the solar-heated reactor, the heat is transferred by means of convective mechanism mainly; instead of radiation mechanism as typically prevailing in fossil-based industrial reforming processes. A scaled-up solar reforming plant of 50.5 MWth was designed and simulated in Dymola® and AspenPlus®. In comparison to a fossil-based industrial reforming process of the same thermal capacity, a solar reforming plant with thermal storage promises a reduction up to 57 \% of annual natural gas consumption in regions with annual DNI-value of 2349 kWh/m2. The benchmark solar reforming plant contributes to a CO2 avoidance of approx. 79 kilotons per year. This facility can produce a nominal output of 734.4 t of synthesis gas and out of this 530 t of methanol a day.}, language = {en} } @inproceedings{RekePeterSchulteTiggesetal.2020, author = {Reke, Michael and Peter, Daniel and Schulte-Tigges, Joschua and Schiffer, Stefan and Ferrein, Alexander and Walter, Thomas and Matheis, Dominik}, title = {A Self-Driving Car Architecture in ROS2}, series = {2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa}, booktitle = {2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa}, publisher = {IEEE}, address = {New York, NY}, isbn = {978-1-7281-4162-6}, doi = {10.1109/SAUPEC/RobMech/PRASA48453.2020.9041020}, pages = {1 -- 6}, year = {2020}, abstract = {In this paper we report on an architecture for a self-driving car that is based on ROS2. Self-driving cars have to take decisions based on their sensory input in real-time, providing high reliability with a strong demand in functional safety. In principle, self-driving cars are robots. However, typical robot software, in general, and the previous version of the Robot Operating System (ROS), in particular, does not always meet these requirements. With the successor ROS2 the situation has changed and it might be considered as a solution for automated and autonomous driving. Existing robotic software based on ROS was not ready for safety critical applications like self-driving cars. We propose an architecture for using ROS2 for a self-driving car that enables safe and reliable real-time behaviour, but keeping the advantages of ROS such as a distributed architecture and standardised message types. First experiments with an automated real passenger car at lower and higher speed-levels show that our approach seems feasible for autonomous driving under the necessary real-time conditions.}, language = {en} } @article{RegerKuhnhenneEbbertetal.2020, author = {Reger, Vitali and Kuhnhenne, Markus and Ebbert, Thiemo and Hachul, Helmut and Blanke, Tobias and D{\"o}ring, Bernd}, title = {Nutzung erneuerbarer Energien durch thermische Aktivierung von Komponenten aus Stahl}, series = {Stahlbau}, volume = {2020}, journal = {Stahlbau}, number = {Volume 89, Issue 6512-519}, publisher = {Ernst \& Sohn}, address = {Berlin}, issn = {1437-1049}, doi = {10.1002/stab.202000031}, pages = {512 -- 519}, year = {2020}, abstract = {Die Versorgung von Neubauten soll m{\"o}glichst weitgehend unabh{\"a}ngig von fossilen Energietr{\"a}gern erfolgen. Erneuerbare Energien spielen daf{\"u}r eine gewichtige Rolle. Eine gute M{\"o}glichkeit, erneuerbare Energien ohne viel zus{\"a}tzlichen Aufwand nutzbar zu machen, ist, bereits vorhandenen Komponenten im Geb{\"a}ude zus{\"a}tzliche Funktionen zu geben. Hier kann bspw. die Fassade oder das Dach solarthermisch aktiviert oder durch Fotovoltaikmodule erg{\"a}nzt werden. Auch Tiefgr{\"u}ndungen k{\"o}nnen neben der statischen Funktion noch eine geothermische Funktion zur Aufnahme oder Abgabe von W{\"a}rme erhalten. Neben der Erzeugung bietet sich auch f{\"u}r die Verteilung der W{\"a}rme oder K{\"a}lte im Geb{\"a}ude die Integration in Bauteile an. Hier kann bspw. der Boden durch eine Fußbodenheizung oder die Decke durch Deckenstrahlplatten aktiviert werden. Im Rahmen der Ver{\"o}ffentlichung wird auf die thermische Aktivierung von Stahlkomponenten eingegangen. Es wird eine L{\"o}sung vorgestellt, die vorgeh{\"a}ngte hinterl{\"u}ftete Stahlfassade (VHF) solarthermisch zu aktivieren. Außerdem werden zwei M{\"o}glichkeiten zur geothermischen Aktivierung von Tiefgr{\"u}ndungen mittels Stahlpf{\"a}hlen gezeigt. Zuletzt wird ein System zur thermischen Aktivierung von Stahltrapezprofilen an der Decke erl{\"a}utert, welches W{\"a}rme zuf{\"u}hren oder bei Bedarf abf{\"u}hren kann.}, language = {de} } @article{RauschKahmannBaltschunetal.2020, author = {Rausch, Valentin and Kahmann, Stephanie Lucina and Baltschun, Christoph and Staat, Manfred and M{\"u}ller, Lars P. and Wegmann, Kilian}, title = {Pressure distribution to the distal biceps tendon at the radial tuberosity: a biomechanical study}, series = {The Journal of Hand Surgery}, volume = {45}, journal = {The Journal of Hand Surgery}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0363-5023}, doi = {10.1016/j.jhsa.2020.01.006}, pages = {776.e1 -- 776.e9}, year = {2020}, abstract = {Purpose Mechanical impingement at the narrow radioulnar space of the tuberosity is believed to be an etiological factor in the injury of the distal biceps tendon. The aim of the study was to compare the pressure distribution at the proximal radioulnar space between 2 fixation techniques and the intact state. Methods Six right arms and 6 left arms from 5 female and 6 male frozen specimens were used for this study. A pressure transducer was introduced at the height of the radial tuberosity with the intact distal biceps tendon and after 2 fixation methods: the suture-anchor and the cortical button technique. The force (N), maximum pressure (kPa) applied to the radial tuberosity, and the contact area (mm²) of the radial tuberosity with the ulna were measured and differences from the intact tendon were detected from 60° supination to 60° pronation in 15° increments with the elbow in full extension and in 45° and 90° flexion of the elbow. Results With the distal biceps tendon intact, the pressures during pronation were similar regardless of extension and flexion and were the highest at 60° pronation with 90° elbow flexion (23.3 ± 53.5 kPa). After repair of the tendon, the mean peak pressure, contact area, and total force showed an increase regardless of the fixation technique. Highest peak pressures were found using the cortical button technique at 45° flexion of the elbow and 60° pronation. These differences were significantly different from the intact tendon. The contact area was significantly larger in full extension and 15°, 30°, and 60° pronation using the cortical button technique. Conclusions Pressures on the distal biceps tendon at the radial tuberosity increase during pronation, especially after repair of the tendon. Clinical relevance Mechanical impingement could play a role in both the etiology of primary distal biceps tendon ruptures and the complications occurring after fixation of the tendon using certain techniques.}, language = {en} }