@article{ElQuardiStreckertBitzetal.2011, author = {El Quardi, A. and Streckert, J. and Bitz, Andreas and M{\"u}nkner, S. and Engel, J. and Hansen, V.}, title = {New fin-line devices for radiofrequency exposure of small biological samples in vitro allowing whole-cell patch clamp recordings}, series = {Bioelectromagnetics}, volume = {32}, journal = {Bioelectromagnetics}, number = {2}, publisher = {Wiley}, address = {Weinheim}, issn = {1521-186X}, doi = {10.1002/bem.20621}, pages = {102 -- 112}, year = {2011}, abstract = {The development and analysis of three waveguides for the exposure of small biological in vitro samples to mobile communication signals at 900 MHz (GSM, Global System for Mobile Communications), 1.8 GHz (GSM), and 2 GHz (UMTS, Universal Mobile Telecommunications System) is presented. The waveguides were based on a fin-line concept and the chamber containing the samples bathed in extracellular solution was placed onto two fins with a slot in between, where the exposure field concentrates. Measures were taken to allow for patch clamp recordings during radiofrequency (RF) exposure. The necessary power for the achievement of the maximum desired specific absorption rate (SAR) of 20 W/kg (average over the mass of the solution) was approximately Pin = 50 mW, Pin = 19 mW, and Pin = 18 mW for the 900 MHz, 1800 MHz, and 2 GHz devices, respectively. At 20 W/kg, a slight RF-induced temperature elevation in the solution of no more than 0.3 °C was detected, while no thermal offsets due to the electromagnetic exposure could be detected at the lower SAR settings (2, 0.2, and 0.02 W/kg). A deviation of 10\% from the intended solution volume yielded a calculated SAR deviation of 8\% from the desired value. A maximum ±10\% variation in the local SAR could occur when the position of the patch clamp electrode was altered within the area where the cells to be investigated were located.}, language = {en} } @article{ChenSchoembergKraffetal.2016, author = {Chen, Bixia and Schoemberg, Tobias and Kraff, Oliver and Dammann, Philipp and Bitz, Andreas and Schlamann, Marc and Quick, Harald H. and Ladd, Mark E. and Sure, Ulrich and Wrede, Karsten H.}, title = {Cranial fixation plates in cerebral magnetic resonance imaging: a 3 and 7 Tesla in vivo image quality study}, series = {Magnetic Resonance Materials in Physics, Biology and Medicine}, volume = {29}, journal = {Magnetic Resonance Materials in Physics, Biology and Medicine}, number = {3}, publisher = {Springer}, address = {Berlin}, issn = {1352-8661}, doi = {10.1007/s10334-016-0548-1}, pages = {389 -- 398}, year = {2016}, abstract = {Objective This study assesses and quantifies impairment of postoperative magnetic resonance imaging (MRI) at 7 Tesla (T) after implantation of titanium cranial fixation plates (CFPs) for neurosurgical bone flap fixation. Materials and methods The study group comprised five patients who were intra-individually examined with 3 and 7 T MRI preoperatively and postoperatively (within 72 h/3 months) after implantation of CFPs. Acquired sequences included T₁-weighted magnetization-prepared rapid-acquisition gradient-echo (MPRAGE), T₂-weighted turbo-spin-echo (TSE) imaging, and susceptibility-weighted imaging (SWI). Two experienced neurosurgeons and a neuroradiologist rated image quality and the presence of artifacts in consensus reading. Results Minor artifacts occurred around the CFPs in MPRAGE and T2 TSE at both field strengths, with no significant differences between 3 and 7 T. In SWI, artifacts were accentuated in the early postoperative scans at both field strengths due to intracranial air and hemorrhagic remnants. After resorption, the brain tissue directly adjacent to skull bone could still be assessed. Image quality after 3 months was equal to the preoperative examinations at 3 and 7 T. Conclusion Image quality after CFP implantation was not significantly impaired in 7 T MRI, and artifacts were comparable to those in 3 T MRI.}, language = {en} } @article{BitzZhouElQuardietal.2009, author = {Bitz, Andreas and Zhou, Yi and El Quardi, Abdessamad and Streckert, Joachim}, title = {Occupational Exposure at Mobile Communication Base Station Antenna Sites}, series = {Frequenz}, volume = {63}, journal = {Frequenz}, number = {7-8}, issn = {2191-6349}, doi = {10.1515/FREQ.2009.63.7-8.123}, pages = {123 -- 128}, year = {2009}, language = {en} } @article{BitzFelderWittig2013, author = {Bitz, Andreas and Felder, Jorg and Wittig, Tilmann}, title = {Designing MRI Coils with Aid of Simulation}, series = {Microwaves \& RF}, volume = {52}, journal = {Microwaves \& RF}, number = {7}, publisher = {Penton}, address = {Cleveland, Ohio}, issn = {0745-2993}, pages = {56}, year = {2013}, language = {en} } @article{BankOrzadaSmitsetal.2015, author = {Bank, Bart L. van de and Orzada, Stephan and Smits, Frits and Lagemaat, Miriam W. and Rodgers, Christopher T. and Bitz, Andreas and Scheenen, Tom W. J.}, title = {Optimized (31) P MRS in the human brain at 7 T with a dedicated RF coil setup}, series = {NMR in Biomedicine}, volume = {28}, journal = {NMR in Biomedicine}, number = {11}, publisher = {Wiley}, address = {Weinheim}, issn = {1099-1492}, doi = {10.1002/nbm.3422}, pages = {1570 -- 1578}, year = {2015}, language = {en} }