@article{YoshinobuMoritzFingeretal.2006, author = {Yoshinobu, Tatsuo and Moritz, Werner and Finger, Friedhelm and Sch{\"o}ning, Michael Josef}, title = {Application of thin-film amorphous silicon to chemical imaging}, series = {Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A.}, journal = {Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A.}, number = {Paper 0910-A-20-01}, editor = {Comini, Elisabetta}, isbn = {9781558998711}, pages = {1 -- 10}, year = {2006}, language = {en} } @article{WeberMoRamakrishna2006, author = {Weber, Hans-Joachim and Mo, Xiumei and Ramakrishna, S.}, title = {PCL-PGLA composite tubular scaffold preparation and biocompatibility investigation / X. Mo, H.-J. Weber, S. Ramakrishna}, series = {The International journal of artificial organs. 29 (2006), H. 8}, journal = {The International journal of artificial organs. 29 (2006), H. 8}, publisher = {-}, pages = {790 -- 799}, year = {2006}, language = {en} } @inproceedings{WagnerYoshinobuOttoetal.2006, author = {Wagner, Torsten and Yoshinobu, T. and Otto, R. and Rao, C. and Molina, R. and Sch{\"o}ning, Michael Josef}, title = {Licht-adressierbare potentiometrische Sensorsysteme - Konzepte und Anwendungen}, series = {Sensoren und Mess-Systeme 2006 : Vortr{\"a}ge der 13. ITG/GMA-Fachtagung vom 13. bis 14.3.2006 in Freiburg/Breisgau}, booktitle = {Sensoren und Mess-Systeme 2006 : Vortr{\"a}ge der 13. ITG/GMA-Fachtagung vom 13. bis 14.3.2006 in Freiburg/Breisgau}, publisher = {VDE Verl.}, address = {Berlin}, isbn = {3-8007-2939-3}, pages = {165 -- 168}, year = {2006}, language = {de} } @inproceedings{WagnerSchoening2006, author = {Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Preface of the Special Issue of I3S 2005 in J{\"u}lich (Germany)}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1365}, year = {2006}, abstract = {International Symposium on Sensor Science, I3S 2005 <3; 2005; Juelich, Germany> In: Sensors 2006, 6, 260-261 ISSN 1424-8220}, subject = {Biosensor}, language = {en} } @article{WagnerRaoKloocketal.2006, author = {Wagner, Torsten and Rao, C. and Kloock, Joachim P. and Yoshinobu, T. and Otto, R. and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {"LAPS Card"—A novel chip card-based light-addressable potentiometric sensor (LAPS)}, series = {Sensors and Actuators B: Chemical. 118 (2006), H. 1-2}, journal = {Sensors and Actuators B: Chemical. 118 (2006), H. 1-2}, isbn = {0925-4005}, pages = {33 -- 40}, year = {2006}, language = {en} } @inproceedings{WagnerKohlFroebaetal.2006, author = {Wagner, Thorsten and Kohl, Claus-Dieter and Fr{\"o}ba, Michael and Tiemann, Michael}, title = {Gas sensing properties of ordered mesoporous SnO2}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1422}, year = {2006}, abstract = {We report on the synthesis and CO gas-sensing properties of mesoporous tin(IV) oxides (SnO2). For the synthesis cetyltrimethylammonium bromide (CTABr) was used as a structure-directing agent; the resulting SnO2 powders were applied as films to commercially available sensor substrates by drop coating. Nitrogen physisorption shows specific surface areas up to 160 m2·g-1 and mean pore diameters of about 4 nm, as verified by TEM. The film conductance was measured in dependence on the CO concentration in humid synthetic air at a constant temperature of 300 °C. The sensors show a high sensitivity at low CO concentrations and turn out to be largely insensitive towards changes in the relative humidity. We compare the materials with commercially available SnO2-based sensors.}, subject = {Biosensor}, language = {en} } @inproceedings{TymeckiGlabKoncki2006, author = {Tymecki, Lukasz and Glab, Stanislaw and Koncki, Robert}, title = {Miniaturized, planar ion-selective electrodes fabricated by means of thick-film technology}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1506}, year = {2006}, abstract = {Various planar technologies are employed for developing solid-state sensors having low cost, small size and high reproducibility; thin- and thick-film technologies are most suitable for such productions. Screen-printing is especially suitable due to its simplicity, low-cost, high reproducibility and efficiency in large-scale production. This technology enables the deposition of a thick layer and allows precise pattern control. Moreover, this is a highly economic technology, saving large amounts of the used inks. In the course of repetitions of the film-deposition procedure there is no waste of material due to additivity of this thick-film technology. Finally, the thick films can be easily and quickly deposited on inexpensive substrates. In this contribution, thick-film ion-selective electrodes based on ionophores as well as crystalline ion-selective materials dedicated for potentiometric measurements are demonstrated. Analytical parameters of these sensors are comparable with those reported for conventional potentiometric electrodes. All mentioned thick-film strip electrodes have been totally fabricated in only one, fully automated thickfilm technology, without any additional manual, chemical or electrochemical steps. In all cases simple, inexpensive, commercially available materials, i.e. flexible, plastic substrates and easily cured polymer-based pastes were used.}, subject = {Biosensor}, language = {en} } @article{StreunChavanLameetal.2006, author = {Streun, M. and Chavan, U. and Lame, H. and Parl, C. and M{\"u}ller-Veggian, Mattea and Ziemons, Karl}, title = {Treating the Gain Non-Uniformity of Multi Channel PMTs by Channel-Specific Trigger Levels}, series = {2006 IEEE Nuclear Science Symposium Conference Record, Vol. 2.}, journal = {2006 IEEE Nuclear Science Symposium Conference Record, Vol. 2.}, address = {San Diego, CA}, issn = {1082-3654}, pages = {1301 -- 1304}, year = {2006}, language = {en} } @article{StreunBrandenburgLarueetal.2006, author = {Streun, M. and Brandenburg, G. and Larue, H. and Parl, C. and Ziemons, Karl}, title = {The data acquisition system of ClearPET neuro - a small animal PET scanner}, series = {IEEE Transactions on Nuclear Science}, volume = {53}, journal = {IEEE Transactions on Nuclear Science}, number = {3}, isbn = {0018-9499}, pages = {700 -- 703}, year = {2006}, abstract = {The Crystal Clear Collaboration has developed a modular system for a small animal PET scanner (ClearPET). The modularity allows the assembly of scanners of different sizes and characteristics in order to satisfy the specific needs of the individual member institutions. The system performs depth of interaction detection by using a phoswich arrangement combining LSO and LuYAP scintillators which are coupled to Multichannel Photomultipliers (PMTs). For each PMT a free running 40 MHz ADC digitizes the signal and the complete scintillation pulse is sampled by an FPGA and sent with 20 MB/s to a PC for preprocessing. The pulse provides information about the gamma energy and the scintillator material which identifies the interaction layer. Furthermore, the exact pulse starting time is obtained from the sampled data. This is important as no hardware coincidence detection is implemented. All single events are recorded and coincidences are identified by software. The system in J{\"u}lich (ClearPET Neuro) is equipped with 10240 crystals on 80 PMTs. The paper will present an overview of the data acquisition system.}, language = {en} } @article{StreunBrandenburgKhodaverdietal.2006, author = {Streun, M. and Brandenburg, G. and Khodaverdi, M. and Larue, H. and Parl, C. and Ziemons, Karl}, title = {Timemark correction for the ClearPET™ scanners}, series = {2005 IEEE Nuclear Science Symposium Conference Record, Vol. 4}, journal = {2005 IEEE Nuclear Science Symposium Conference Record, Vol. 4}, isbn = {1082-3654}, pages = {2057 -- 2060}, year = {2006}, abstract = {The small animal PET scanners developed by the Crystal Clear Collaboration (ClearPETtrade) detect coincidences by analyzing timemarks which are attached to each event. The scanners are able to save complete single list mode data which allows analysis and modification of the timemarks after data acquisition. The timemarks are obtained from the digitally sampled detector pulses by calculating the baseline crossing of the rising edge of the pulse which is approximated as a straight line. But the limited sampling frequency causes a systematic error in the determination of the timemark. This error depends on the phase of the sampling clock at the time of the event. A statistical method that corrects these errors will be presented}, language = {en} }