@article{MorandiButenwegBreisetal.2022, author = {Morandi, Paolo and Butenweg, Christoph and Breis, Khaled and Beyer, Katrin and Magenes, Guido}, title = {Latest findings on the behaviour factor q for the seismic design of URM buildings}, series = {Bulletin of Earthquake Engineering}, volume = {20}, journal = {Bulletin of Earthquake Engineering}, number = {11}, editor = {Ansal, Atilla}, publisher = {Springer Nature}, address = {Cham}, issn = {1573-1456}, doi = {10.1007/s10518-022-01419-7}, pages = {5797 -- 5848}, year = {2022}, abstract = {Recent earthquakes as the 2012 Emilia earthquake sequence showed that recently built unreinforced masonry (URM) buildings behaved much better than expected and sustained, despite the maximum PGA values ranged between 0.20-0.30 g, either minor damage or structural damage that is deemed repairable. Especially low-rise residential and commercial masonry buildings with a code-conforming seismic design and detailing behaved in general very well without substantial damages. The low damage grades of modern masonry buildings that was observed during this earthquake series highlighted again that codified design procedures based on linear analysis can be rather conservative. Although advances in simulation tools make nonlinear calculation methods more readily accessible to designers, linear analyses will still be the standard design method for years to come. The present paper aims to improve the linear seismic design method by providing a proper definition of the q-factor of URM buildings. These q-factors are derived for low-rise URM buildings with rigid diaphragms which represent recent construction practise in low to moderate seismic areas of Italy and Germany. The behaviour factor components for deformation and energy dissipation capacity and for overstrength due to the redistribution of forces are derived by means of pushover analyses. Furthermore, considerations on the behaviour factor component due to other sources of overstrength in masonry buildings are presented. As a result of the investigations, rationally based values of the behaviour factor q to be used in linear analyses in the range of 2.0-3.0 are proposed.}, language = {en} } @article{Mohnke1987, author = {Mohnke, Andreas}, title = {High-rate sputtering of zinc oxide with a funnel-shaped magnetic field: Effect of the target thickness on the layer properties}, series = {Vakuum-Technik. 36 (1987), H. 5}, journal = {Vakuum-Technik. 36 (1987), H. 5}, isbn = {0042-2266}, pages = {148 -- 151}, year = {1987}, language = {en} } @article{MistlerButenwegMeskouris2006, author = {Mistler, Michael and Butenweg, Christoph and Meskouris, Konstantin}, title = {Modelling methods of historic masonry buildings under seismic excitation}, series = {Journal of seismology}, volume = {Volume 10}, journal = {Journal of seismology}, number = {No. 4}, issn = {1383-4649 (Print) ; 1573-157X (E-Journal)}, doi = {10.1007/s10950-006-9033-z}, pages = {497 -- 510}, year = {2006}, language = {en} } @article{MistlerAnthoineButenweg2007, author = {Mistler, Michael and Anthoine, A. and Butenweg, Christoph}, title = {In-plane and out-of-plane homogenisation of masonry}, series = {Computers \& structures}, volume = {Volume 85}, journal = {Computers \& structures}, number = {Issues 17-18}, issn = {1879-2243 (E-Journal); 0045-7949 (Print)}, doi = {10.1016/j.compstruc.2006.08.087}, pages = {1321 -- 1330}, year = {2007}, language = {en} } @article{MikulicsMarsoCamaraMayorgaetal.2005, author = {Mikulics, M. and Marso, M. and C{\´a}mara Mayorga, I. and Gusten, R. and Stancek, S. and Michael, E. A. and Schieder, R. and Wolter, M. and Buca, D. and F{\"o}rster, Arnold and Kordos, P. and L{\"u}th, H.}, title = {Photomixers fabricated on nitrogen-ion-implanted GaAs}, series = {Applied physics letters. 87 (2005)}, journal = {Applied physics letters. 87 (2005)}, pages = {041106-1 -- 041106-3}, year = {2005}, language = {en} } @article{MikulicsCamaraHardtetal.2004, author = {Mikulics, M. and Camara, I. and Hardt, A. van der and Fox, A. and F{\"o}rster, Arnold and Gusten, R. and L{\"u}th, H. and Kordos, P.}, title = {Generation of THz radiation by photomixing in low-temperature-grown MBE GaAs}, series = {Fifth International Conference on Advanced Semiconductor Devices and Microsystems : conference proceedings ; Smolenice Castle, Slovakia, October 17 - 21, 2004 / [organizers: Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava and Microelectronics Department, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava]. Ed. by J. Osvald}, journal = {Fifth International Conference on Advanced Semiconductor Devices and Microsystems : conference proceedings ; Smolenice Castle, Slovakia, October 17 - 21, 2004 / [organizers: Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava and Microelectronics Department, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava]. Ed. by J. Osvald}, publisher = {IEEE Operations Center}, address = {Piscataway, NJ}, isbn = {0-7803-8335-7}, pages = {231 -- 234}, year = {2004}, language = {en} } @article{MikulicsAdamKordosetal.2005, author = {Mikulics, M. and Adam, R. and Kordos, P. and F{\"o}rster, Arnold and L{\"u}th, H. and Wu, S. and Zheng, X. and Sobolewski, R.}, title = {Ultrafast low-temperature-grown epitaxial GaAs photodetectors transferred on flexible plastic substrates}, series = {IEEE photonics technology letters : IEEE PTL. 17 (2005), H. 8}, journal = {IEEE photonics technology letters : IEEE PTL. 17 (2005), H. 8}, isbn = {1041-1135}, pages = {1725 -- 1727}, year = {2005}, language = {en} } @article{MichelButenwegKinkel2018, author = {Michel, Philipp and Butenweg, Christoph and Kinkel, Sven}, title = {Pile-grid foundations of onshore wind turbines considering soil-structure-interaction under seismic loading}, series = {Soil Dynamics and Earthquake Engineering}, volume = {109}, journal = {Soil Dynamics and Earthquake Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0267-7261}, doi = {10.1016/j.soildyn.2018.03.009}, pages = {299 -- 311}, year = {2018}, abstract = {In recent years, many onshore wind turbines are erected in seismic active regions and on soils with poor load bearing capacity, where pile grids are inevitable to transfer the loads into the ground. In this contribution, a realistic multi pile grid is designed to analyze the dynamics of a wind turbine tower including frequency dependent soil-structure-interaction. It turns out that different foundations on varying soil configurations heavily influence the vibration response. While the vibration amplitude is mostly attenuated, certain unfavorable combinations of structure and soil parameters lead to amplification in the range of the system's natural frequencies. This testifies the need for overall dynamic analysis in the assessment of the dynamic stability and the holistic frequency tuning of the turbines.}, language = {en} } @article{MelissOesterwindVoss1975, author = {Meliß, Michael and Oesterwind, Dieter and Voß, Alfred}, title = {Non-nuclear and non-fossil energy resources and their possibilities for future power generation}, series = {Kerntechnik}, volume = {17}, journal = {Kerntechnik}, number = {7}, publisher = {De Gruyter}, address = {Berlin}, issn = {0932-3902}, doi = {10.18419/opus-8093}, pages = {301 -- 306}, year = {1975}, abstract = {It must be stressed that the assessment of the exploitation possibilities of the energy resources discussed in this paper requires further studies. With this proviso, the situation can be provisionally summarised as follows: The total potential of known geothermal steam sources is only 64 GW. Geothermal energy could therefore only make a significant contribution to covering the worldwide power needs if we succeed in exploiting dry geothermal reservoirs. Exploitation of tidal energy is limited to a few geographically favourable locations. The power generation potential at these locations is only about 64 GW. An important drawback of tidal power is discontinuous power generation. Large scale exploitation of wind, wave and glacier energy, and of ocean heat, requires solution of a number of technological problems. The environmental effects of exploitation of these energy resources are to some extent of a qualitatively different nature from those of operation of fossil-fuel-fired and of nuclear power plants. The scanty knowledge in this area often results in these effects being underestimated. In any case, however, it would be deliberately misleading to postulate that any form of power generation is possible without some detrimental effects on the environment. It may be stated in conclusion that, owing to their small potential or to the as yet insufficiently advanced technological development, none of the energy resources discussed in this paper can make a significant contribution to the solution of middle-term energy supply problems, i.e., to a rapid replacement of mineral oil and natural gas.}, language = {en} } @article{MaurerRiekeSchemmetal.2023, author = {Maurer, Florian and Rieke, Christian and Schemm, Ralf and Stollenwerk, Dominik}, title = {Analysis of an urban grid with high photovoltaic and e-mobility penetration}, series = {Energies}, volume = {16}, journal = {Energies}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en16083380}, pages = {18 Seiten}, year = {2023}, abstract = {This study analyses the expected utilization of an urban distribution grid under high penetration of photovoltaic and e-mobility with charging infrastructure on a residential level. The grid utilization and the corresponding power flow are evaluated, while varying the control strategies and photovoltaic installed capacity in different scenarios. Four scenarios are used to analyze the impact of e-mobility. The individual mobility demand is modelled based on the largest German studies on mobility "Mobilit{\"a}t in Deutschland", which is carried out every 5 years. To estimate the ramp-up of photovoltaic generation, a potential analysis of the roof surfaces in the supply area is carried out via an evaluation of an open solar potential study. The photovoltaic feed-in time series is derived individually for each installed system in a resolution of 15 min. The residential consumption is estimated using historical smart meter data, which are collected in London between 2012 and 2014. For a realistic charging demand, each residential household decides daily on the state of charge if their vehicle requires to be charged. The resulting charging time series depends on the underlying behavior scenario. Market prices and mobility demand are therefore used as scenario input parameters for a utility function based on the current state of charge to model individual behavior. The aggregated electricity demand is the starting point of the power flow calculation. The evaluation is carried out for an urban region with approximately 3100 residents. The analysis shows that increased penetration of photovoltaics combined with a flexible and adaptive charging strategy can maximize PV usage and reduce the need for congestion-related intervention by the grid operator by reducing the amount of kWh charged from the grid by 30\% which reduces the average price of a charged kWh by 35\% to 14 ct/kWh from 21.8 ct/kWh without PV optimization. The resulting grid congestions are managed by implementing an intelligent price or control signal. The analysis took place using data from a real German grid with 10 subgrids. The entire software can be adapted for the analysis of different distribution grids and is publicly available as an open-source software library on GitHub.}, language = {en} }