@inproceedings{NoetzoldUphuesWegeneretal.2013, author = {N{\"o}tzold, K. and Uphues, A. and Wegener, R. and Fink, K. and Bragard, Michael and Griessel, R. and Soter, S.}, title = {Inverter based test setup for LVRT verification of a full-scale 2 MW wind power converter}, series = {15th European Conference on Power Electronics and Applications (EPE), 2013 : 2 - 6 Sept. 2013, Lille, France / [EPE Association; PELS, IEEE Power Electronics Society]}, booktitle = {15th European Conference on Power Electronics and Applications (EPE), 2013 : 2 - 6 Sept. 2013, Lille, France / [EPE Association; PELS, IEEE Power Electronics Society]}, publisher = {IEEE}, address = {Piscataway, NJ}, isbn = {978-1-4799-0115-9 (Online-Ausg.)}, doi = {10.1109/EPE.2013.6634752}, pages = {1037 -- 1042}, year = {2013}, language = {en} } @misc{NoetzoldBragardFinketal.2014, author = {N{\"o}tzold, K. and Bragard, Michael and Fink, K. and Griessel, R. and Wegener, R.}, title = {Cascaded H-bridge converter with transformer based cell power balancing in each voltage level : [Patentschrift]}, publisher = {Europ{\"a}isches Patentamt / United States Patent and Trademark Office [u.a.]}, address = {Den Haag / Alexandria, VA}, pages = {16 S. : graph. Darst.}, year = {2014}, language = {en} } @inproceedings{NursinskiStolbergGangatharanCzarnecki2016, author = {Nursinski-Stolberg, Andr{\´e} and Gangatharan, Kiritharan and Czarnecki, Christian}, title = {Development of a subject-oriented reference process model for the telecommunications industry}, series = {GI Edition Proceedings Band 259 INFORMATIK 2016}, booktitle = {GI Edition Proceedings Band 259 INFORMATIK 2016}, editor = {Mayr, Heinrich C. and Pinzger, Martin}, publisher = {Gesellschaft f{\"u}r Informatik e.V.}, address = {Bonn}, isbn = {9783885796534}, issn = {1617-5468}, pages = {699 -- 712}, year = {2016}, abstract = {Generally the usage of reference models can be structured top-down or bottom-up. The practical need of agile change and flexible organizational implementation requires a consistent mapping to an operational level. In this context, well-established reference process models are typically structured top-down. The subject-oriented Business Process Management (sBPM) offers a modeling concept that is structured bottom-up and concentrates on the process actors on an operational level. This paper applies sBPM to the enhanced Telecom Operations Map (eTOM), a well-accepted reference process model in the telecommunications industry. The resulting design artifact is a concrete example for a combination of a bottom-up and top-down developed reference model. The results are evaluated and confirmed in practical context through the involvement of the industry body TMForum.}, language = {en} } @article{NoureddineKraffLaddetal.2017, author = {Noureddine, Yacine and Kraff, Oliver and Ladd, Mark E. and Wrede, Karsten H. and Chen, Bixia and Quick, Harald H. and Schaefers, Gregor and Bitz, Andreas}, title = {In vitro and in silico assessment of RF-induced heating around intracranial aneurysm clips at 7 Tesla}, series = {Magnetic Resonance in Medicine}, journal = {Magnetic Resonance in Medicine}, number = {Early view}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.26650}, pages = {14 Seiten}, year = {2017}, language = {en} } @article{NoureddineKraffLaddetal.2019, author = {Noureddine, Yacine and Kraff, Oliver and Ladd, Mark E. and Wrede, Karsten and Chen, Bixia and Quick, Harald H. and Schaefers, Georg and Bitz, Andreas}, title = {Radiofrequency induced heating around aneurysm clips using a generic birdcage head coil at 7 Tesla under consideration of the minimum distance to decouple multiple aneurysm clips}, series = {Magnetic Resonance in Medicine}, journal = {Magnetic Resonance in Medicine}, number = {Early view}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.27835}, pages = {1 -- 17}, year = {2019}, language = {en} } @article{NoureddineBitzLaddetal.2015, author = {Noureddine, Yacine and Bitz, Andreas and Ladd, Mark E. and Th{\"u}rling, Markus and Ladd, Susanne C. and Schaefers, Gregor and Kraff, Oliver}, title = {Experience with magnetic resonance imaging of human subjects with passive implants and tattoos at 7 T: a retrospective study}, series = {Magnetic Resonance Materials in Physics, Biology and Medicine}, volume = {28}, journal = {Magnetic Resonance Materials in Physics, Biology and Medicine}, number = {6}, publisher = {Springer}, address = {Berlin}, issn = {1352-8661}, doi = {10.1007/s10334-015-0499-y}, pages = {577 -- 590}, year = {2015}, language = {en} } @inproceedings{NikolovskiRekeElsenetal.2021, author = {Nikolovski, Gjorgji and Reke, Michael and Elsen, Ingo and Schiffer, Stefan}, title = {Machine learning based 3D object detection for navigation in unstructured environments}, series = {2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)}, booktitle = {2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)}, publisher = {IEEE}, isbn = {978-1-6654-7921-9}, doi = {10.1109/IVWorkshops54471.2021.9669218}, pages = {236 -- 242}, year = {2021}, abstract = {In this paper we investigate the use of deep neural networks for 3D object detection in uncommon, unstructured environments such as in an open-pit mine. While neural nets are frequently used for object detection in regular autonomous driving applications, more unusual driving scenarios aside street traffic pose additional challenges. For one, the collection of appropriate data sets to train the networks is an issue. For another, testing the performance of trained networks often requires tailored integration with the particular domain as well. While there exist different solutions for these problems in regular autonomous driving, there are only very few approaches that work for special domains just as well. We address both the challenges above in this work. First, we discuss two possible ways of acquiring data for training and evaluation. That is, we evaluate a semi-automated annotation of recorded LIDAR data and we examine synthetic data generation. Using these datasets we train and test different deep neural network for the task of object detection. Second, we propose a possible integration of a ROS2 detector module for an autonomous driving platform. Finally, we present the performance of three state-of-the-art deep neural networks in the domain of 3D object detection on a synthetic dataset and a smaller one containing a characteristic object from an open-pit mine.}, language = {en} } @inproceedings{NikolovskiLimpertNessauetal.2023, author = {Nikolovski, Gjorgji and Limpert, Nicolas and Nessau, Hendrik and Reke, Michael and Ferrein, Alexander}, title = {Model-predictive control with parallelised optimisation for the navigation of autonomous mining vehicles}, series = {2023 IEEE Intelligent Vehicles Symposium (IV)}, booktitle = {2023 IEEE Intelligent Vehicles Symposium (IV)}, publisher = {IEEE}, isbn = {979-8-3503-4691-6 (Online)}, doi = {10.1109/IV55152.2023.10186806}, pages = {6 Seiten}, year = {2023}, abstract = {The work in modern open-pit and underground mines requires the transportation of large amounts of resources between fixed points. The navigation to these fixed points is a repetitive task that can be automated. The challenge in automating the navigation of vehicles commonly used in mines is the systemic properties of such vehicles. Many mining vehicles, such as the one we have used in the research for this paper, use steering systems with an articulated joint bending the vehicle's drive axis to change its course and a hydraulic drive system to actuate axial drive components or the movements of tippers if available. To address the difficulties of controlling such a vehicle, we present a model-predictive approach for controlling the vehicle. While the control optimisation based on a parallel error minimisation of the predicted state has already been established in the past, we provide insight into the design and implementation of an MPC for an articulated mining vehicle and show the results of real-world experiments in an open-pit mine environment.}, language = {en} } @article{NiemuellerLakemeyerFerreinetal.2013, author = {Niem{\"u}ller, Tim and Lakemeyer, Gerhard and Ferrein, Alexander and Reuter, S. and Ewert, D. and Jeschke, S. and Pensky, D. and Karras, Ulrich}, title = {Proposal for advancements to the LLSF in 2014 and beyond}, pages = {Publ. online}, year = {2013}, language = {en} } @inproceedings{NiemuellerLakemeyerFerrein2013, author = {Niem{\"u}ller, Tim and Lakemeyer, Gerhard and Ferrein, Alexander}, title = {Aspects of integrating diverse software into robotic systems extended abstract}, series = {ICRA 2013 - 8th Workshop on Software Development and Integration in Robotics (SDIR), Karlsruhe, Germany}, booktitle = {ICRA 2013 - 8th Workshop on Software Development and Integration in Robotics (SDIR), Karlsruhe, Germany}, pages = {1 -- 2}, year = {2013}, language = {en} }