@incollection{ZhubanovaMansurovDigel2020, author = {Zhubanova, Azhar A. and Mansurov, Zulkhair A. and Digel, Ilya}, title = {Use of Advanced Nanomaterials for Bioremediation of Contaminated Ecosystems}, series = {Carbon Nanomaterials in Biomedicine and the Environment}, booktitle = {Carbon Nanomaterials in Biomedicine and the Environment}, publisher = {Jenny Stanford Publishing}, address = {Singapore}, isbn = {978-981-4800-27-3}, doi = {10.1201/9780429428647-18}, pages = {353 -- 378}, year = {2020}, abstract = {This chapter shows that nanomaterials obtained by high-temperature carbonization of inexpensive plant raw material such as rice husk, grape seeds, and walnut shells can serve as a basis for the production of highly efficient microbial drugs, biodestructors, biosorbents, and biocatalysts, which are promising for the remediation of the ecosystem contaminated with heavy and radioactive metals, oil and oil products. A strong interest in engineering zymology is dictated by the necessity to address the issues of monitoring enzymatic processes, treatment, and diagnosis of a number of common human diseases, environmental pollution, quality control of pharmaceuticals and food. Nanomaterials obtained by high-temperature carbonization of cheap plant raw material such as-rice husks, grape seeds and walnut shells, can serve as a basis for creating of highly effective microbial preparations-biodestructors, biosorbents and biocatalysts, which are promising for the use of contaminated ecosystems, and for restoration of human intestine microecology.}, language = {en} } @incollection{YoshinobuKrauseMiyamotoetal.2018, author = {Yoshinobu, Tatsuo and Krause, Steffi and Miyamoto, Ko-ichiro and Werner, Frederik and Poghossian, Arshak and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {(Bio-)chemical Sensing and Imaging by LAPS and SPIM}, series = {Label-free biosensing: advanced materials, devices and applications}, booktitle = {Label-free biosensing: advanced materials, devices and applications}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-75219-8}, pages = {103 -- 132}, year = {2018}, abstract = {The light-addressable potentiometric sensor (LAPS) and scanning photo-induced impedance microscopy (SPIM) are two closely related methods to visualise the distributions of chemical species and impedance, respectively, at the interface between the sensing surface and the sample solution. They both have the same field-effect structure based on a semiconductor, which allows spatially resolved and label-free measurement of chemical species and impedance in the form of a photocurrent signal generated by a scanning light beam. In this article, the principles and various operation modes of LAPS and SPIM, functionalisation of the sensing surface for measuring various species, LAPS-based chemical imaging and high-resolution sensors based on silicon-on-sapphire substrates are described and discussed, focusing on their technical details and prospective applications.}, language = {en} } @incollection{WolffSeefeldtBaueretal.2014, author = {Wolff, Nino and Seefeldt, Patric and Bauer, Wolfgang and Fiebig, Christopher and Gerding, Patrick and Parow-Souchon, Kai and Pongs, Anna and Reiffenrath, Matti and Ziemann, Thomas}, title = {Alternative application of solar sail technology}, series = {Advances in solar sailing}, booktitle = {Advances in solar sailing}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-642-34906-5 (Print) ; 978-3-642-34907-2 (E-Book)}, doi = {10.1007/978-3-642-34907-2_23}, pages = {351 -- 365}, year = {2014}, abstract = {The development of Gossamer sail structures for solar sails contributes to a large field of future space applications like thin film solar generators, membrane antennas and drag sails. The focus of this paper is the development of a drag sail based on solar sail technology that could contribute to a reduction of space debris in low Earth orbits. The drag sail design and its connections to solar sail development, a first test on a sounding rocket, as well as the ongoing integration of the drag sail into a triple CubeSat is presented.}, language = {en} } @incollection{WolfKapelyukhScheeretal.2015, author = {Wolf, C. Roland and Kapelyukh, Yury and Scheer, Nico and Henderson, Colin J.}, title = {Application of Humanised and Other Transgenic Models to Predict Human Responses to Drugs}, editor = {Wilson, Alan G. E.}, publisher = {RSC Publ.}, address = {Cambridge}, isbn = {978-1-78262-778-4}, doi = {10.1039/9781782622376-00152}, pages = {152 -- 176}, year = {2015}, abstract = {The use of transgenic animal models has transformed our knowledge of complex biochemical pathways in vivo. It has allowed disease processes to be modelled and used in the development of new disease prevention and treatment strategies. They can also be used to define cell- and tissue-specific pathways of gene regulation. A further major application is in the area of preclinical development where such models can be used to define pathways of chemical toxicity, and the pathways that regulate drug disposition. One major application of this approach is the humanisation of mice for the proteins that control drug metabolism and disposition. Such models can have numerous applications in the development of drugs and in their more sophisticated use in the clinic.}, language = {en} } @incollection{Wilke2016, author = {Wilke, Thomas}, title = {Planning Process of the Di Castellamonte's Chapel of the Holy Shroud}, series = {Carlo e Amedeo di Castellamonte : 1571-1683, ingegneri e architetti per i duchi di Savoia}, booktitle = {Carlo e Amedeo di Castellamonte : 1571-1683, ingegneri e architetti per i duchi di Savoia}, editor = {Merlotti, Andrea}, publisher = {Campisano editore}, address = {Rom}, isbn = {978-88-98229-57-4}, pages = {141 -- 152}, year = {2016}, language = {en} } @incollection{WendorffEggertPohletal.2007, author = {Wendorff, Marion and Eggert, Thorsten and Pohl, Martina and Dresen, Carola and M{\"u}ller, Michael and Jaeger, Karl-Erich and Sprenger, Georg A. and Sch{\"u}rmann, Melanie and Sch{\"u}rmann, Martin and Johnen, Sandra and Sprenger, Gerda and Sahm, Hermann and Inoue, Tomoyuki and Sch{\"o}rken, Ulrich and Breittaupt, Holger and Fr{\"o}lich, Bettina and Heim, Petra and Iding, Hans and Juchem, Bettina and Siegert, Petra and Kula, Maria-Regina and Weckbecker, Andrea and Hummel, Werner and Fessner, Wolf-Dieter and Elling, Lothar and Wolberg, Michael and Bode, Silke and Feldmann, Ralf and Geilenkirchen, Petra and Schubert, Thomas and Walter, Lydia and D{\"u}nnwald, Thomas and Demir, Ayhan S. and Kolter-Jung, Doris and Nitsche, Adam and D{\"u}nkelmann, Pascal and Cosp, Annabel and Lingen, Bettina}, title = {Catalytic asymmetric synthesis : section 2.2}, series = {Asymmetric synthesis with chemical and biological methods / ed. by Dieter Enders ...}, booktitle = {Asymmetric synthesis with chemical and biological methods / ed. by Dieter Enders ...}, publisher = {Wiley-VCH}, address = {Weinheim}, isbn = {978-3-527-31473-7}, pages = {298 -- 413}, year = {2007}, language = {en} } @incollection{Weber1998, author = {Weber, Hans-Joachim}, title = {Applied physics of compressible and incompressible fluids}, series = {Critical care nephrology / [Hrsg.:] Claudio Ronco and Rinaldo Bellomo}, booktitle = {Critical care nephrology / [Hrsg.:] Claudio Ronco and Rinaldo Bellomo}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-94-010-6306-7}, pages = {63 -- 84}, year = {1998}, language = {en} } @incollection{WagemannTippkoetter2019, author = {Wagemann, Kurt and Tippk{\"o}tter, Nils}, title = {Biorefineries: a short introduction}, series = {Biorefineries}, booktitle = {Biorefineries}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-97117-9}, doi = {10.1007/10_2017_4}, pages = {1 -- 11}, year = {2019}, abstract = {The terms bioeconomy and biorefineries are used for a variety of processes and developments. This short introduction is intended to provide a delimitation and clarification of the terminology as well as a classification of current biorefinery concepts. The basic process diagrams of the most important biorefinery types are shown.}, language = {en} } @incollection{vondenDrieschSteuerDankertBergetal.2020, author = {von den Driesch, Elena and Steuer-Dankert, Linda and Berg, Tobias and Leicht-Scholten, Carmen}, title = {Implementation of gender and diversity perspectives in transport development plans in germany}, series = {Engendering cities: designing sustainable urban spaces for all}, booktitle = {Engendering cities: designing sustainable urban spaces for all}, publisher = {Routledge}, address = {London}, isbn = {978-1-351-20090-5}, pages = {90 -- 109}, year = {2020}, abstract = {As mobility should ensure the accessibility to and participation in society, transport planning has to deal with a variety of gender and diversity categories affecting users' mobility needs and patterns. Exemplified by an analysis of an instrument of transport development processes - German Transport Development Plans (TDPs) - we investigated to what extent diverse target groups and their mobility requirements are implemented in transport strategy papers. Research results illustrate a still-prevalent neglect of several relevant gender and diversity categories while prioritizing and focusing on eco-friendly topics. But how sustainable can transport be without facing the diversification of life circumstances?}, language = {en} } @incollection{TranStaat2014, author = {Tran, Thanh Ngoc and Staat, Manfred}, title = {Shakedown analysis of Reissner-Mindlin plates using the edge-based smoothed finite element method}, series = {Direct methods for limit states in structures and materials / Dieter Weichert ; Alan Ponter, ed.}, booktitle = {Direct methods for limit states in structures and materials / Dieter Weichert ; Alan Ponter, ed.}, publisher = {Springer}, address = {Dordrecht [u.a.]}, isbn = {978-94-007-6826-0 (Print) 978-94-007-6827-7 (Online)}, doi = {10.1007/978-94-007-6827-7_5}, pages = {101 -- 117}, year = {2014}, abstract = {This paper concerns the development of a primal-dual algorithm for limit and shakedown analysis of Reissner-Mindlin plates made of von Mises material. At each optimization iteration, the lower bound of the shakedown load multiplier is calculated simultaneously with the upper bound using the duality theory. An edge-based smoothed finite element method (ES-FEM) combined with the discrete shear gap (DSG) technique is used to improve the accuracy of the solutions and to avoid the transverse shear locking behaviour. The method not only possesses all inherent features of convergence and accuracy from ES-FEM, but also ensures that the total number of variables in the optimization problem is kept to a minimum compared with the standard finite element formulation. Numerical examples are presented to demonstrate the effectiveness of the present method.}, language = {en} }