@inproceedings{RendonSchwagerGhiasietal.2020, author = {Rendon, Carlos and Schwager, Christian and Ghiasi, Mona and Schmitz, Pascal and Bohang, Fakhri and Chico Caminos, Ricardo Alexander and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Modeling and upscaling of a pilot bayonettube reactor for indirect solar mixed methane reforming}, series = {AIP Conference Proceedings}, booktitle = {AIP Conference Proceedings}, number = {2303}, doi = {10.1063/5.0029974}, pages = {170012-1 -- 170012-9}, year = {2020}, abstract = {A 16.77 kW thermal power bayonet-tube reactor for the mixed reforming of methane using solar energy has been designed and modeled. A test bench for the experimental tests has been installed at the Synlight facility in Juelich, Germany and has just been commissioned. This paper presents the solar-heated reactor design for a combined steam and dry reforming as well as a scaled-up process simulation of a solar reforming plant for methanol production. Solar power towers are capable of providing large amounts of heat to drive high-endothermic reactions, and their integration with thermochemical processes shows a promising future. In the designed bayonet-tube reactor, the conventional burner arrangement for the combustion of natural gas has been substituted by a continuous 930 °C hot air stream, provided by means of a solar heated air receiver, a ceramic thermal storage and an auxiliary firing system. Inside the solar-heated reactor, the heat is transferred by means of convective mechanism mainly; instead of radiation mechanism as typically prevailing in fossil-based industrial reforming processes. A scaled-up solar reforming plant of 50.5 MWth was designed and simulated in Dymola® and AspenPlus®. In comparison to a fossil-based industrial reforming process of the same thermal capacity, a solar reforming plant with thermal storage promises a reduction up to 57 \% of annual natural gas consumption in regions with annual DNI-value of 2349 kWh/m2. The benchmark solar reforming plant contributes to a CO2 avoidance of approx. 79 kilotons per year. This facility can produce a nominal output of 734.4 t of synthesis gas and out of this 530 t of methanol a day.}, language = {en} } @inproceedings{RendonDieckmannWeidleetal.2018, author = {Rendon, Carlos and Dieckmann, Simon and Weidle, Mathias and Dersch, J{\"u}rgen and Teixeira Boura, Cristiano Jos{\´e} and Polklas, Thomas and Kuschel, Marcus and Herrmann, Ulf}, title = {Retrofitting of existing parabolic trough collector power plants with molten salt tower systems}, series = {AIP Conference Proceedings}, volume = {2033}, booktitle = {AIP Conference Proceedings}, number = {1}, doi = {10.1063/1.5067030}, pages = {030014-1 -- 030014-8}, year = {2018}, language = {en} } @inproceedings{RenaultButenwegMistler2005, author = {Renault, Philippe and Butenweg, Christoph and Mistler, Michael}, title = {Seismic vulnerability assessment system for bridges}, series = {Proceedings of the Tenth International Conference on Civil, Structural and Environmental Engineering Computing : [Rome, Italy, 30. August - 2. September 2005] / ed. by B. H. V. Topping}, booktitle = {Proceedings of the Tenth International Conference on Civil, Structural and Environmental Engineering Computing : [Rome, Italy, 30. August - 2. September 2005] / ed. by B. H. V. Topping}, publisher = {Civil-Comp Press}, address = {Stirling}, organization = {International Conference on Civil, Structural and Environmental Engineering Computing <10, 2005, Rome>}, isbn = {1-905088-00-0}, pages = {1 -- 14}, year = {2005}, language = {en} } @inproceedings{RenaultButenweg2005, author = {Renault, Philippe and Butenweg, Christoph}, title = {Seismic vulnerability assessment of bridges}, series = {First Munich Bridge Assessment Conference, MBAC 2005 : Munich, 20.-25. June 2005}, booktitle = {First Munich Bridge Assessment Conference, MBAC 2005 : Munich, 20.-25. June 2005}, organization = {Munich Bridge Assessment Conference <1, 2005>}, pages = {1 -- 16}, year = {2005}, language = {en} } @inproceedings{RekePeterSchulteTiggesetal.2020, author = {Reke, Michael and Peter, Daniel and Schulte-Tigges, Joschua and Schiffer, Stefan and Ferrein, Alexander and Walter, Thomas and Matheis, Dominik}, title = {A Self-Driving Car Architecture in ROS2}, series = {2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa}, booktitle = {2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa}, publisher = {IEEE}, address = {New York, NY}, isbn = {978-1-7281-4162-6}, doi = {10.1109/SAUPEC/RobMech/PRASA48453.2020.9041020}, pages = {1 -- 6}, year = {2020}, abstract = {In this paper we report on an architecture for a self-driving car that is based on ROS2. Self-driving cars have to take decisions based on their sensory input in real-time, providing high reliability with a strong demand in functional safety. In principle, self-driving cars are robots. However, typical robot software, in general, and the previous version of the Robot Operating System (ROS), in particular, does not always meet these requirements. With the successor ROS2 the situation has changed and it might be considered as a solution for automated and autonomous driving. Existing robotic software based on ROS was not ready for safety critical applications like self-driving cars. We propose an architecture for using ROS2 for a self-driving car that enables safe and reliable real-time behaviour, but keeping the advantages of ROS such as a distributed architecture and standardised message types. First experiments with an automated real passenger car at lower and higher speed-levels show that our approach seems feasible for autonomous driving under the necessary real-time conditions.}, language = {en} } @article{ReisselWick1991, author = {Reißel, Martin and Wick, J.}, title = {Eddy Current Computation / Reissel, M. ; Wick, J.}, series = {Proceedings of the Fifth European Conference on Mathematics in Industry : June 6 - 9, 1990 Lahti / ed. by Matti Heili{\"o}}, journal = {Proceedings of the Fifth European Conference on Mathematics in Industry : June 6 - 9, 1990 Lahti / ed. by Matti Heili{\"o}}, publisher = {Teubner}, address = {Stuttgart}, isbn = {3-519-02176-5}, pages = {335 -- 338}, year = {1991}, language = {en} } @article{ReisselTakeiBruneetal.1999, author = {Reißel, Martin and Takei, T. and Brune, M. and K{\"o}ttgen, V.}, title = {FEM Based Durability Analysis of the Knuckle of a Passenger Car / Takei, T. ; Brune, M. ; K{\"o}ttgen, V. ; Reissel, M.}, series = {Proceedings. JSAE Annual Congress (1999)}, journal = {Proceedings. JSAE Annual Congress (1999)}, isbn = {0919-1364}, pages = {17 -- 20}, year = {1999}, language = {en} } @article{ReisselQuell1996, author = {Reißel, Martin and Quell, P.}, title = {On the Vanishing Displacement Current Limit for Eddy-Current Problems / Quell, P. ; Reißel, M.}, series = {ZAMM - Zeitschrift f{\"u}r Angewandte Mathematik und Mechanik. 76 (1996), H. S2}, journal = {ZAMM - Zeitschrift f{\"u}r Angewandte Mathematik und Mechanik. 76 (1996), H. S2}, isbn = {0044-2267}, pages = {649 -- 650}, year = {1996}, language = {en} } @article{ReisselLustfeldSteffenetal.2009, author = {Reißel, Martin and Lustfeld, H. and Steffen, B. and Schmidt, U.}, title = {Reconstruction of Electric Currents in a Fuel Cell by Magnetic Field Measurements / Lustfeld, H. ; Reißel, M. ; Steffen, B. ; Schmidt, U.}, series = {Journal of fuel cell science and technology}, volume = {Vol. 6}, journal = {Journal of fuel cell science and technology}, number = {Iss. 2}, isbn = {1550-624X}, pages = {021012-1 -- 021012-8}, year = {2009}, language = {en} } @article{ReisselLustfeldHirschfeldetal.2009, author = {Reißel, Martin and Lustfeld, H. and Hirschfeld, J. and Steffen, B.}, title = {Uniqueness of magnetotomography for fuel cells and fuel cell stacks / Lustfeld, H. ; Hirschfeld, J. ; Reißel, M ; Steffen, B.}, series = {Journal of Physics A: Mathematical and Theoretical. 42 (2009), H. 495205}, journal = {Journal of Physics A: Mathematical and Theoretical. 42 (2009), H. 495205}, isbn = {0022-3689}, pages = {9 S.}, year = {2009}, language = {en} }