@inproceedings{MorandiButenwegBreisetal.2022, author = {Morandi, Paolo and Butenweg, Christoph and Breis, Khaled and Beyer, Katrin and Magenes, Guido}, title = {Behaviour factor q for the seismic design of URM buildings}, series = {The Third European Conference on Earthquake Engineering and Seismology}, booktitle = {The Third European Conference on Earthquake Engineering and Seismology}, editor = {Arion, Christian and Scupin, Alexandra and Ţigănescu, Alexandru}, isbn = {978-973-100-533-1}, pages = {1184 -- 1194}, year = {2022}, abstract = {Recent earthquakes showed that low-rise URM buildings following codecompliant seismic design and details behaved in general very well without substantial damages. Although advances in simulation tools make nonlinear calculation methods more readily accessible to designers, linear analyses will still be the standard design method for years to come. The present paper aims to improve the linear seismic design method by providing a proper definition of the q-factor of URM buildings. Values of q-factors are derived for low-rise URM buildings with rigid diaphragms, with reference to modern structural configurations realized in low to moderate seismic areas of Italy and Germany. The behaviour factor components for deformation and energy dissipation capacity and for overstrength due to the redistribution of forces are derived by means of pushover analyses. As a result of the investigations, rationally based values of the behaviour factor q to be used in linear analyses in the range of 2.0 to 3.0 are proposed.}, language = {en} } @article{MoraisSumanSchoeningetal.2023, author = {Morais, Paulo V. and Suman, Pedro H. and Sch{\"o}ning, Michael Josef and Siqueira Junior, Jos{\´e} R. and Orlandi, Marcelo O.}, title = {Layer-by-layer film based on Sn₃O₄ nanobelts as sensing units to detect heavy metals using a capacitive field-effect sensor platform}, series = {Chemosensors}, volume = {11}, journal = {Chemosensors}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors11080436}, pages = {Artikel 436}, year = {2023}, abstract = {Lead and nickel, as heavy metals, are still used in industrial processes, and are classified as "environmental health hazards" due to their toxicity and polluting potential. The detection of heavy metals can prevent environmental pollution at toxic levels that are critical to human health. In this sense, the electrolyte-insulator-semiconductor (EIS) field-effect sensor is an attractive sensing platform concerning the fabrication of reusable and robust sensors to detect such substances. This study is aimed to fabricate a sensing unit on an EIS device based on Sn₃O₄ nanobelts embedded in a polyelectrolyte matrix of polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) using the layer-by-layer (LbL) technique. The EIS-Sn₃O₄ sensor exhibited enhanced electrochemical performance for detecting Pb²⁺ and Ni²⁺ ions, revealing a higher affinity for Pb²⁺ ions, with sensitivities of ca. 25.8 mV/decade and 2.4 mV/decade, respectively. Such results indicate that Sn₃O₄ nanobelts can contemplate a feasible proof-of-concept capacitive field-effect sensor for heavy metal detection, envisaging other future studies focusing on environmental monitoring.}, language = {en} } @article{MoraisSilvaDantasetal.2019, author = {Morais, Paulo V. and Silva, Anielle C. A. and Dantas, Noelio O. and Sch{\"o}ning, Michael Josef and Siqueira, Jos{\´e} R., Jr.}, title = {Hybrid Layer-by-Layer Film of Polyelectrolytes-Embedded Catalytic CoFe2O4 Nanocrystals as Sensing Units in Capacitive Electrolyte-Insulator-Semiconductor Devices}, series = {physica status solidi a : applications and materials sciences}, volume = {216}, journal = {physica status solidi a : applications and materials sciences}, number = {1900044}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/pssa.201900044}, pages = {1 -- 9}, year = {2019}, language = {en} } @article{MoraisGomesSilvaetal.2017, author = {Morais, Paulo V. and Gomes, Vanderley F., Jr. and Silva, Anielle C. A. and Dantas, Noelio O. and Sch{\"o}ning, Michael Josef and Siqueira, Jos{\´e} R., Jr.}, title = {Nanofilm of ZnO nanocrystals/carbon nanotubes as biocompatible layer for enzymatic biosensors in capacitive field-effect devices}, series = {Journal of Materials Science}, volume = {52}, journal = {Journal of Materials Science}, number = {20}, publisher = {Springer}, address = {Berlin}, issn = {1573-4803}, doi = {10.1007/s10853-017-1369-y}, pages = {12314 -- 12325}, year = {2017}, abstract = {The incorporation of nanomaterials that are biocompatible with different types of biological compounds has allowed the development of a new generation of biosensors applied especially in the biomedical field. In particular, the integration of film-based nanomaterials employed in field-effect devices can be interesting to develop biosensors with enhanced properties. In this paper, we studied the fabrication of sensitive nanofilms combining ZnO nanocrystals and carbon nanotubes (CNTs), prepared by means of the layer-by-layer (LbL) technique, in a capacitive electrolyte-insulator-semiconductor (EIS) structure for detecting glucose and urea. The ZnO nanocrystals were incorporated in a polymeric matrix of poly(allylamine) hydrochloride (PAH), and arranged with multi-walled CNTs in a LbL PAH-ZnO/CNTs film architecture onto EIS chips. The electrochemical characterizations were performed by capacitance-voltage and constant capacitance measurements, while the morphology of the films was characterized by atomic force microscopy. The enzymes glucose oxidase and urease were immobilized on film's surface for detection of glucose and urea, respectively. In order to obtain glucose and urea biosensors with optimized amount of sensitive films, we investigated the ideal number of bilayers for each detection system. The glucose biosensor showed better sensitivity and output signal for an LbL PAH-ZnO/CNTs nanofilm with 10 bilayers. On the other hand, the urea biosensor presented enhanced properties even for the first bilayer, exhibiting high sensitivity and output signal. The presence of the LbL PAH-ZnO/CNTs films led to biosensors with better sensitivity and enhanced response signal, demonstrating that the adequate use of nanostructured films is feasible for proof-of-concept biosensors with improved properties that may be employed for biomedical applications.}, language = {en} } @article{Moosdorf2009, author = {Moosdorf, Andreas}, title = {It's not just the Talent, it's the Knowledge Transfer Method}, series = {GC Ticker}, journal = {GC Ticker}, number = {1}, pages = {16 -- 16}, year = {2009}, language = {en} } @book{Moosdorf2008, author = {Moosdorf, Andreas}, title = {The determinants of international knowledge transfer effectiveness - conceptual advances and empirical verification}, year = {2008}, language = {en} } @article{MontiWaldvogelRitzmannetal.2021, author = {Monti, Elena and Waldvogel, Janice and Ritzmann, Ramona and Freyler, Kathrin and Albracht, Kirsten and Helm, Michael and De Cesare, Niccol{\`o} and Pavan, Piero and Reggiani, Carlo and Gollhofer, Albert and Narici, Marco Vincenzo}, title = {Muscle in variable gravity: "I do not know where I am, but I know what to do"}, series = {Frontiers in Physiology}, volume = {12}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2021.714655}, pages = {19 Seiten}, year = {2021}, abstract = {Performing tasks, such as running and jumping, requires activation of the agonist and antagonist muscles before (motor unit pre-activation) and during movement performance (Santello and Mcdonagh, 1998). A well-timed and regulated muscle activation elicits a stretch-shortening cycle (SSC) response, naturally occurring in bouncing movements (Ishikawa and Komi, 2004; Taube et al., 2012). By definition, the SSC describes the stretching of a pre-activated muscle-tendon complex immediately followed by a muscle shortening in the concentric push-off phase (Komi, 1984). Given the importance of SSC actions for human movement, it is not surprising that many studies investigated the biomechanics of this phenomenon; in particular, drop jumps (DJs) represent a good paradigm to study muscle fascicle and tendon behavior in ballistic movements involving the SSC. Within a DJ, three main phases [pre-activation, braking, and push-off (PO; Komi, 2000)] have been recognized and extensively studied in common and challenging conditions, such as changes in load, falling height, or simulated hypo-gravity (Avela et al., 1994; Arampatzis et al., 2001; Fukashiro et al., 2005; Ishikawa et al., 2005; Sousa et al., 2007; Ritzmann et al., 2016; Helm et al., 2020). These studies show that the timing and amount of triceps-surae muscle-tendon unit pre-activation in DJs are differentially regulated based on the load applied to the muscle, being optimal in normal "Earth" gravity conditions (Avela et al., 1994), but decreased in simulated hypo-gravity, hyper-gravity (Avela et al., 1994; Ritzmann et al., 2016), or unknown conditions (i.e., unknown falling heights; Helm et al., 2020). Some authors indicated that, when falling from heights different from the optimal one [defined as the drop height giving a maximum DJ performance indicated as peak ground reaction force (GRF) or jump high], electromyographic (EMG) activity of the plantar flexors increases from lower than optimal to higher than optimal heights (Ishikawa and Komi, 2004; Sousa et al., 2007). These findings highlight the ability of the central nervous system to regulate the timing and amount of pre-activation according to different jumping conditions, thus regulating muscle fascicle length, tendon and joint stiffness as well as position, in order to safely land on the ground and quickly re-bounce. Similarly, to pre-activation, also in the braking phase, the plantar flexors are differentially regulated. In optimal height (i.e., load) jumping conditions, gastrocnemius medialis (GM) fascicles shorten at early ground contact (possibly due to the intervention of the stretch reflex; Gollhofer et al., 1992) and behave quasi-isometrically in the late braking phase, enabling tendon elongation, and storage of elastic energy (Gollhofer et al., 1992; Fukashiro et al., 2005; Sousa et al., 2007). When increasing the falling height (augmenting the impact GRF), the quasi-isometric behavior of fascicles disappears, and fast fascicle lengthening occurs (Ishikawa et al., 2005; Sousa et al., 2007). In the third and last PO phase, fascicles shorten and the tendon releases the elastic energy previously stored. Bobbert et al. (1987) reported no influence of jumping height on the work done and on the net vertical impulse assessed during PO; this observation suggests that, despite an optimal DJ performance might be achieved only in specific conditions (falling heights, loads), the central nervous system seems to be able to regulate muscle behavior in order to effectively perform the required task also in challenging situations. Although the regulation of triceps-surae muscle-tendon unit in DJs has been extensively investigated, very few studies focused on sarcomeres behavior during the performance of this SSC movement (Kurokawa et al., 2003; Fukashiro et al., 2005, 2006). Sarcomeres represent muscle contractile units and are known to express different amounts of force depending on their length (Gordon et al., 1966; Walker and Schrodt, 1974); thus, understanding the time course of their responses during DJs is fundamental to gain further insights into muscle force-generating capacity. In vivo measurement of sarcomere length in humans has been so far been performed only in static positions and under highly controlled experimental conditions (Llewellyn et al., 2008; Sanchez et al., 2015). Instead, human sarcomere length estimation (achieved by dividing GM measured fascicle length for a fixed sarcomere number) in dynamic contractions provided an indirect measure of sarcomere operating range during squat jump, countermovement jump, and DJ (Fukashiro et al., 2005, 2006; Kurokawa et al., 2003). The results of these studies showed that sarcomeres operate in the ascending limb of their length-tension (L-T) relationship in all types of jumps, and particularly so in DJ. However, most of the available observations on sarcomere and muscle fascicle behavior were made in condition of constant gravity. Thus, in order to understand how sarcomere and muscle fascicle length are regulated in variable gravity conditions, we performed experiments in a parabolic flight, involving variable gravity levels, ranging from about zero-g to about double the Earth's gravity (1 g; Waldvogel et al., 2021). Specifically, the aims of the present study were as follows: 1. To investigate the ability of the neuromuscular system in regulating fascicle length in response to conditions of variable gravity. 2. To estimate sarcomere operative length in the different DJ phases, in order to calculate its theoretical force production and its possible modulation in conditions of variable gravity. We hypothesized that muscle fascicles would be differentially regulated in different gravity conditions compared to 1 g, particularly in anticipation of landing and re-bouncing in unknown gravity levels. In addition, we hypothesized that sarcomeres would operate in the upper part of the ascending limb of their L-T relationship, possibly lengthening during the braking phase (especially in hyper-gravity) while operating quasi-isometrically in 1 g.}, language = {en} } @article{MonakhovaSobolevaFedotovaetal.2022, author = {Monakhova, Yulia and Soboleva, Polina M. and Fedotova, Elena S. and Musina, Kristina T. and Burmistrova, Natalia A.}, title = {Quantum chemical calculations of IR spectra of heparin disaccharide subunits}, series = {Computational and Theoretical Chemistry}, volume = {1217}, journal = {Computational and Theoretical Chemistry}, number = {Article number: 113891}, publisher = {Elsevier}, address = {New York, NY}, isbn = {2210-271X}, doi = {10.1016/j.comptc.2022.113891}, year = {2022}, abstract = {Heparin is a natural polysaccharide, which plays essential role in many biological processes. Alterations in building blocks can modify biological roles of commercial heparin products, due to significant changes in the conformation of the polymer chain. The variability structure of heparin leads to difficulty in quality control using different analytical methods, including infrared (IR) spectroscopy. In this paper molecular modelling of heparin disaccharide subunits was performed using quantum chemistry. The structural and spectral parameters of these disaccharides have been calculated using RHF/6-311G. In addition, over-sulphated chondroitin sulphate disaccharide was studied as one of the most widespread contaminants of heparin. Calculated IR spectra were analyzed with respect to specific structure parameters. IR spectroscopic fingerprint was found to be sensitive to substitution pattern of disaccharide subunits. Vibrational assignments of calculated spectra were correlated with experimental IR spectral bands of native heparin. Chemometrics was used to perform multivariate analysis of simulated spectral data.}, language = {en} } @article{MonakhovaDiehl2021, author = {Monakhova, Yulia and Diehl, Bernd W.K.}, title = {Novel approach of qNMR workflow by standardization using 2H integral: Application to any intrinsic calibration standard}, series = {Talanta}, volume = {222}, journal = {Talanta}, number = {Article number: 121504}, publisher = {Elsevier}, isbn = {0039-9140}, doi = {10.1016/j.talanta.2020.121504}, year = {2021}, abstract = {Quantitative nuclear magnetic resonance (qNMR) is routinely performed by the internal or external standardization. The manuscript describes a simple alternative to these common workflows by using NMR signal of another active nuclei of calibration compound. For example, for any arbitrary compound quantification by NMR can be based on the use of an indirect concentration referencing that relies on a solvent having both 1H and 2H signals. To perform high-quality quantification, the deuteration level of the utilized deuterated solvent has to be estimated. In this contribution the new method was applied to the determination of deuteration levels in different deuterated solvents (MeOD, ACN, CDCl3, acetone, benzene, DMSO-d6). Isopropanol-d6, which contains a defined number of deuterons and protons, was used for standardization. Validation characteristics (precision, accuracy, robustness) were calculated and the results showed that the method can be used in routine practice. Uncertainty budget was also evaluated. In general, this novel approach, using standardization by 2H integral, benefits from reduced sample preparation steps and uncertainties, and can be applied in different application areas (purity determination, forensics, pharmaceutical analysis, etc.).}, language = {en} } @article{MonakhovaDiehl2022, author = {Monakhova, Yulia and Diehl, Bernd W.K.}, title = {Multinuclear NMR screening of pharmaceuticals using standardization by 2H integral of a deuterated solvent}, series = {Journal of Pharmaceutical and Biomedical Analysis}, volume = {209}, journal = {Journal of Pharmaceutical and Biomedical Analysis}, number = {Article number: 114530}, publisher = {Elsevier}, isbn = {0731-7085}, doi = {10.1016/j.jpba.2021.114530}, year = {2022}, abstract = {NMR standardization approach that uses the 2H integral of deuterated solvent for quantitative multinuclear analysis of pharmaceuticals is described. As a proof of principle, the existing NMR procedure for the analysis of heparin products according to US Pharmacopeia monograph is extended to the determination of Na+ and Cl- content in this matrix. Quantification is performed based on the ratio of a 23Na (35Cl) NMR integral and 2H NMR signal of deuterated solvent, D2O, acquired using the specific spectrometer hardware. As an alternative, the possibility of 133Cs standardization using the addition of Cs2CO3 stock solution is shown. Validation characteristics (linearity, repeatability, sensitivity) are evaluated. A holistic NMR profiling of heparin products can now also be used for the quantitative determination of inorganic compounds in a single analytical run using a single sample. In general, the new standardization methodology provides an appealing alternative for the NMR screening of inorganic and organic components in pharmaceutical products.}, language = {en} }