@article{ThustSchoeningFrohnhoffetal.1996, author = {Thust, Marion and Sch{\"o}ning, Michael Josef and Frohnhoff, S. and Arens-Fischer, R. and Kordos, P. and L{\"u}th, H.}, title = {Porous silicon as a substrate material for potentiometric biosensors}, series = {Measurement Science and Technology}, volume = {7}, journal = {Measurement Science and Technology}, number = {1}, doi = {10.1088/0957-0233/7/1/003}, pages = {26 -- 29}, year = {1996}, language = {en} } @article{ThustSchoeningSchrothetal.1999, author = {Thust, M. and Sch{\"o}ning, Michael Josef and Schroth, P. and Malkoc, {\"U}. and Dicker, C. I. and Steffen, A. and Kordos, P. and L{\"u}th, H.}, title = {Enzyme immobilisation on planar and porous silicon substrates for biosensor applications}, series = {Journal of Molecular Catalysis B: Enzymatic. 7 (1999), H. 1-4}, journal = {Journal of Molecular Catalysis B: Enzymatic. 7 (1999), H. 1-4}, isbn = {1381-1177}, pages = {77 -- 83}, year = {1999}, language = {en} } @article{ThustSchrothToepleretal.1998, author = {Thust, M. and Schroth, P. and T{\"o}pler, A. and Sch{\"o}ning, Michael Josef and M{\"u}ller-Veggian, Mattea and Kordos, P. and L{\"u}th, H.}, title = {Improving the detection limit of a capacitive sensor by means of a diffusion barrier}, series = {Eurosensors XII : proceedings of the 12th European Conference on Solid-State Transducers and the 9th UK Conference on Sensors and their Applications, Southampton, UK, 13 - 16 September 1998 / ed. by N. M. White ; Vol. 1}, journal = {Eurosensors XII : proceedings of the 12th European Conference on Solid-State Transducers and the 9th UK Conference on Sensors and their Applications, Southampton, UK, 13 - 16 September 1998 / ed. by N. M. White ; Vol. 1}, publisher = {Inst. of Physics Publ.}, address = {Bristol [u.a.]}, isbn = {0-7503-0595-9}, pages = {507 -- 510}, year = {1998}, language = {en} } @article{ThustPoghossianSchoeningetal.1999, author = {Thust, M. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Naser, S. and M{\"u}ller-Veggian, Mattea and Kordos, P. and L{\"u}th, H.}, title = {Crosssensitivity of a capacitive penicillin sensor combined with a diffusion barrier}, series = {Proceedings : The Hague, The Netherlands, September 12 - 15, 1999 / [ed. by M. Bartek]. Vol 1.}, journal = {Proceedings : The Hague, The Netherlands, September 12 - 15, 1999 / [ed. by M. Bartek]. Vol 1.}, address = {The Hague, The Netherlands}, isbn = {90-76699-02-X}, pages = {573 -- 576}, year = {1999}, language = {en} } @article{ThustPoghossianSchoeningetal.1999, author = {Thust, M. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Naser, S. and M{\"u}ller-Veggian, Mattea and Kordos, P. and L{\"u}th, H.}, title = {Cross-sensitivity of a capacitive penicillin sensor combined with a diffusion barrier}, series = {Proceedings : The Hague, The Netherlands, September 12 - 15, 1999 / [ed. by M. Bartek]. - Vol 1.}, journal = {Proceedings : The Hague, The Netherlands, September 12 - 15, 1999 / [ed. by M. Bartek]. - Vol 1.}, address = {The Hague, The Netherlands}, isbn = {90-76699-02-X}, pages = {573 -- 576}, year = {1999}, language = {en} } @inproceedings{ThurnGebhardt2017, author = {Thurn, Laura and Gebhardt, Andreas}, title = {Arousing Enthusiasm for STEM: Teaching 3D Printing Technology}, series = {Conference Proceedings: New Perspectives in Science Education}, booktitle = {Conference Proceedings: New Perspectives in Science Education}, publisher = {liberiauniversitaria.it}, address = {Padua}, isbn = {978-88-6292-847-2}, pages = {87 -- 92}, year = {2017}, language = {en} } @inproceedings{ThurnGebhardt2018, author = {Thurn, Laura and Gebhardt, Andreas}, title = {Strategy of Education on Materials for Students}, series = {Conference Proceedings: „New Perspectives in Science Education"}, booktitle = {Conference Proceedings: „New Perspectives in Science Education"}, address = {Florence, Italy}, isbn = {978-88-6292-976-9}, pages = {156 -- 161}, year = {2018}, language = {en} } @inproceedings{ThurnBalcGebhardtetal.2017, author = {Thurn, Laura and Balc, Nicolae and Gebhardt, Andreas and Kessler, Julia}, title = {Education packed in technology to promote innovations: Teaching Additive Manufacturing based on a rolling Lab}, series = {Modern Technologies in Manufacturing (MTeM 2017 - AMaTUC)}, booktitle = {Modern Technologies in Manufacturing (MTeM 2017 - AMaTUC)}, issn = {2261-236X}, doi = {10.1051/matecconf/201713702013}, pages = {6 Seiten}, year = {2017}, language = {en} } @article{ThomessenThomaBraun2023, author = {Thomessen, Karolin and Thoma, Andreas and Braun, Carsten}, title = {Bio-inspired altitude changing extension to the 3DVFH* local obstacle avoidance algorithm}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Wien}, issn = {1869-5590 (Online)}, doi = {10.1007/s13272-023-00691-w}, pages = {11 Seiten}, year = {2023}, abstract = {Obstacle avoidance is critical for unmanned aerial vehicles (UAVs) operating autonomously. Obstacle avoidance algorithms either rely on global environment data or local sensor data. Local path planners react to unforeseen objects and plan purely on local sensor information. Similarly, animals need to find feasible paths based on local information about their surroundings. Therefore, their behavior is a valuable source of inspiration for path planning. Bumblebees tend to fly vertically over far-away obstacles and horizontally around close ones, implying two zones for different flight strategies depending on the distance to obstacles. This work enhances the local path planner 3DVFH* with this bio-inspired strategy. The algorithm alters the goal-driven function of the 3DVFH* to climb-preferring if obstacles are far away. Prior experiments with bumblebees led to two definitions of flight zone limits depending on the distance to obstacles, leading to two algorithm variants. Both variants reduce the probability of not reaching the goal of a 3DVFH* implementation in Matlab/Simulink. The best variant, 3DVFH*b-b, reduces this probability from 70.7 to 18.6\% in city-like worlds using a strong vertical evasion strategy. Energy consumption is higher, and flight paths are longer compared to the algorithm version with pronounced horizontal evasion tendency. A parameter study analyzes the effect of different weighting factors in the cost function. The best parameter combination shows a failure probability of 6.9\% in city-like worlds and reduces energy consumption by 28\%. Our findings demonstrate the potential of bio-inspired approaches for improving the performance of local path planning algorithms for UAV.}, language = {en} } @article{ThomaThomessenGardietal.2023, author = {Thoma, Andreas and Thomessen, Karolin and Gardi, Alessandro and Fisher, A. and Braun, Carsten}, title = {Prioritising paths: An improved cost function for local path planning for UAV in medical applications}, series = {The Aeronautical Journal}, journal = {The Aeronautical Journal}, number = {First View}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {0001-9240 (Print)}, doi = {10.1017/aer.2023.68}, pages = {1 -- 18}, year = {2023}, abstract = {Even the shortest flight through unknown, cluttered environments requires reliable local path planning algorithms to avoid unforeseen obstacles. The algorithm must evaluate alternative flight paths and identify the best path if an obstacle blocks its way. Commonly, weighted sums are used here. This work shows that weighted Chebyshev distances and factorial achievement scalarising functions are suitable alternatives to weighted sums if combined with the 3DVFH* local path planning algorithm. Both methods considerably reduce the failure probability of simulated flights in various environments. The standard 3DVFH* uses a weighted sum and has a failure probability of 50\% in the test environments. A factorial achievement scalarising function, which minimises the worst combination of two out of four objective functions, reaches a failure probability of 26\%; A weighted Chebyshev distance, which optimises the worst objective, has a failure probability of 30\%. These results show promise for further enhancements and to support broader applicability.}, language = {en} }