@article{TemizArtmannBaskurtMeiselman1998, author = {Temiz Artmann, Ayseg{\"u}l and Baskurt, O. K. and Meiselman, H. J.}, title = {Effect of superoxide anions on red blood cell rheologic properties. Baskurt, O. K.; Temiz, A.; Meiselman, H. J.}, series = {Free Radical Biology and Medicine. 24 (1998), H. 1}, journal = {Free Radical Biology and Medicine. 24 (1998), H. 1}, isbn = {0891-5849}, pages = {102 -- 110}, year = {1998}, language = {en} } @article{TemizArtmannBaskurtMeiselman1997, author = {Temiz Artmann, Ayseg{\"u}l and Baskurt, O. K. and Meiselman, H. J.}, title = {Red blood cell aggregation in experimental sepsis . Baskurt, O. K.; Temiz, A.; Meiselman, H. J.}, series = {Journal of Laboratory and Clinical Medicine. 130 (1997), H. 2}, journal = {Journal of Laboratory and Clinical Medicine. 130 (1997), H. 2}, isbn = {0022-2143}, pages = {183 -- 190}, year = {1997}, language = {en} } @article{TemizArtmannBaskurtEdremitlioglu1995, author = {Temiz Artmann, Ayseg{\"u}l and Baskurt, O. K. and Edremitlioglu, M.}, title = {Effect of erythrocyte deformability on myocardial hematocrit gradient. Baskurt, O.K.; Edremitlioglu, M.; Temiz, A.}, series = {American Journal of Physiology: Heart and Circulatory Physiology. 268 (1995), H. 1}, journal = {American Journal of Physiology: Heart and Circulatory Physiology. 268 (1995), H. 1}, isbn = {0363-6135}, pages = {260 -- 264}, year = {1995}, language = {en} } @article{TemizArtmannBaskurtEdremitlioglu1994, author = {Temiz Artmann, Ayseg{\"u}l and Baskurt, O. K. and Edremitlioglu, M.}, title = {In vitro effects of in vivo activated leukocytes on red blood cell filterability and lipid peroxidation. Baskurt, O.K.; Edremitlioglu, M.; Temiz, A.}, series = {Clinical Hemorheology. 14 (1994), H. 4}, journal = {Clinical Hemorheology. 14 (1994), H. 4}, pages = {591 -- 596}, year = {1994}, language = {en} } @article{TemizArtmannAtesUeretmenetal.1998, author = {Temiz Artmann, Ayseg{\"u}l and Ates, H. and {\"U}retmen, {\"O}. and Andac, K.}, title = {Erythrocyte deformability in high-tension and normal tension glaucoma. Ates, H.; {\"U}retmen, {\"O}.; Temiz, A.; Andac, K.}, series = {International Ophthalmology. 22 (1998), H. 1}, journal = {International Ophthalmology. 22 (1998), H. 1}, isbn = {0165-5701}, pages = {7 -- 12}, year = {1998}, language = {en} } @article{TemizArtmannAkhisarogluSercanetal.2005, author = {Temiz Artmann, Ayseg{\"u}l and Akhisaroglu, M. and Sercan, Z. and Kayatekin, B. M.}, title = {Adhesion of Erythrocytes to Endothelial Cells After Acute Exercise: Differences in Red Blood Cells from Juvenile and Adult Rats. Temiz Artmann, A.; Akhisaroglu, M.; Sercan, Z.; Kayatekin, BM.; Yorukoglu, K.; Kirkali, G.}, series = {Physiological Research (2005)}, journal = {Physiological Research (2005)}, isbn = {0862-8408}, year = {2005}, language = {en} } @article{TekinAshikagaHorikawaetal.2018, author = {Tekin, Nurettin and Ashikaga, Mitsugu and Horikawa, Atsushi and Funke, Harald}, title = {Enhancement of fuel flexibility of industrial gas turbines by development of innovative hydrogen combustion systems}, series = {Gas for energy}, journal = {Gas for energy}, number = {2}, publisher = {Vulkan-Verlag}, address = {Essen}, pages = {4}, year = {2018}, abstract = {For fuel flexibility enhancement hydrogen represents a possible alternative gas turbine fuel within future low emission power generation, in case of hydrogen production by the use of renewable energy sources such as wind energy or biomass. Kawasaki Heavy Industries, Ltd. (KHI) has research and development projects for future hydrogen society; production of hydrogen gas, refinement and liquefaction for transportation and storage, and utilization with gas turbine / gas engine for the generation of electricity. In the development of hydrogen gas turbines, a key technology is the stable and low NOx hydrogen combustion, especially Dry Low Emission (DLE) or Dry Low NOx (DLN) hydrogen combustion. Due to the large difference in the physical properties of hydrogen compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for DLE hydrogen combustion. Thus, the development of DLE hydrogen combustion technologies is an essential and challenging task for the future of hydrogen fueled gas turbines. The DLE Micro-Mix combustion principle for hydrogen fuel has been in development for many years to significantly reduce NOx emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized "diffusion-type" flames. The major advantages of this combustion principle are the inherent safety against flashback and the low NOx-emissions due to a very short residence time of the reactants in the flame region of the micro-flames.}, language = {en} } @inproceedings{TeixeiraBouraNiederwestbergMcLeodetal.2016, author = {Teixeira Boura, Cristiano Jos{\´e} and Niederwestberg, Stefan and McLeod, Jacqueline and Herrmann, Ulf and Hoffschmidt, Bernhard}, title = {Development of heat exchanger for high temperature energy storage with bulk materials}, series = {AIP Conference Proceedings}, volume = {1734}, booktitle = {AIP Conference Proceedings}, number = {1}, doi = {10.1063/1.4949106}, pages = {050008-1 -- 050008-7}, year = {2016}, language = {en} } @inproceedings{TeixeiraBouraEcksteinFelinksetal.2011, author = {Teixeira Boura, Cristiano Jos{\´e} and Eckstein, J. and Felinks, J. and G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, S.}, title = {3-D CFD simulation of an air-sand heat exchanger}, series = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, booktitle = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, address = {Granada}, pages = {1 CD-ROM}, year = {2011}, language = {en} } @article{TaylorSchmitzZiemonsetal.2000, author = {Taylor, J. G. and Schmitz, N. and Ziemons, Karl and Grosse-Ruyken, M.-L. and Gruber, O. and M{\"u}ller-G{\"a}rtner, H.-W. and Shah, N. J.}, title = {The network of brain areas involved in the motion aftereffect}, series = {Neuroimage}, volume = {11}, journal = {Neuroimage}, number = {4}, isbn = {1053-8119}, pages = {257 -- 270}, year = {2000}, abstract = {A network of brain areas is expected to be involved in supporting the motion aftereffect. The most active components of this network were determined by means of an fMRI study of nine subjects exposed to a visual stimulus of moving bars producing the effect. Across the subjects, common areas were identified during various stages of the effect, as well as networks of areas specific to a single stage. In addition to the well-known motion-sensitive area MT the prefrontal brain areas BA44 and 47 and the cingulate gyrus, as well as posterior sites such as BA37 and BA40, were important components during the period of the motion aftereffect experience. They appear to be involved in control circuitry for selecting which of a number of processing styles is appropriate. The experimental fMRI results of the activation levels and their time courses for the various areas are explored. Correlation analysis shows that there are effectively two separate and weakly coupled networks involved in the total process. Implications of the results for awareness of the effect itself are briefly considered in the final discussion.}, language = {en} }