@article{StreunBrandenburgLarueetal.2002, author = {Streun, M. and Brandenburg, G. and Larue, H. and Zimmermann, E. and Ziemons, Karl and Halling, H.}, title = {Coincidence detection by digital processing of free-running sampled pulses}, series = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, volume = {487}, journal = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, number = {3}, isbn = {0168-9002}, pages = {530 -- 534}, year = {2002}, abstract = {Coincident events in two scintillator crystals coupled to photomultipliers (PMT) are detected by processing just the digital data of the recorded pulses. For this purpose the signals from both PMTs are continuously sampled by free-running ADCs at a sampling rate of 40 MHz. For each sampled pulse the starting time is determined by processing the pulse data. Even a fairly simple interpolating algorithm results in a FWHM of about 2 ns.}, language = {en} } @article{StreunBrandenburgLarueetal.2002, author = {Streun, M. and Brandenburg, G. and Larue, H. and Zimmermann, E. and Ziemons, Karl and Halling, H.}, title = {A PET system based on data processing of free-running sampled pulses}, series = {2001 IEEE Nuclear Science Symposium Conference Record, Vol. 2}, journal = {2001 IEEE Nuclear Science Symposium Conference Record, Vol. 2}, issn = {1082-3654}, pages = {693 -- 694}, year = {2002}, abstract = {Within the developments for the Crystal Clear small animal PET project (CLEARPET) a dual head PET system has been established. The basic principle is the early digitization of the detector pulses by free running ADCs. The determination of the γ-energy and also the coincidence detection is performed by data processing of the sampled pulses on the host computer. Therefore a time mark is attached to each pulse identifying the current cycle of the 40 MHz sampling clock. In order to refine the time resolution the pulse starting time is interpolated from the samples of the pulse rise. The detector heads consist of multichannel PMTs with a single LSO scintillator crystal coupled to each channel. For each PMT only one ADC is required. The position of an event is obtained separately from trigger signals generated for each single channel. An FPGA is utilized for pulse buffering, generation of the time mark and for the data transfer to the host via a fast I/O-interface.}, language = {en} } @article{StreunBrandenburgLarueetal.2003, author = {Streun, M. and Brandenburg, G. and Larue, H. and Saleh, H. and Zimmermann, E. and Ziemons, Karl and Halling, H.}, title = {Pulse shape discrimination of LSO and LuYAP scintillators for depth of interaction detection in PET}, series = {2002 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, journal = {2002 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, issn = {1082-3654}, pages = {1636 -- 1639}, year = {2003}, abstract = {A feasible way to gain the depth of interaction information in a PET scanner is the use of phoswich detectors. In general the layer of interaction is identified front the pulse shape of the corresponding scintillator material. In this work pulses from LSO and LuYAP crystals were investigated in order to find a practical method of distinguishing. It turned out that such a pulse processing could he kept simple due to an additional slow component in the light decay of the LuYAP pulse. At the same time the short decay time guarantees that the major amount of the light output is still collected within a short pulse recording time.}, language = {en} } @article{StreunBrandenburgLarueetal.2003, author = {Streun, M. and Brandenburg, G. and Larue, H. and Saleh, H. and Zimmermann, E. and Ziemons, Karl and Halling, H.}, title = {Pulse shape discrimination of LSO and LuYAP scintillators for depth of interaction detection in PET}, series = {IEEE Transactions on Nuclear Science}, volume = {50}, journal = {IEEE Transactions on Nuclear Science}, number = {3}, isbn = {0018-9499}, pages = {344 -- 347}, year = {2003}, abstract = {A feasible way to gain the depth of interaction information in a positron emission tomography scanner is the use of phoswich detectors. In general, the layer of interaction is identified from the pulse shape of the corresponding scintillator material. In this work, pulses from LSO and LuYAP crystals were investigated in order to find a practical method of distinguishing. It turned out that such a pulse processing could be kept simple because of an additional slow component in the light decay of the LuYAP pulse. At the same time, the short decay time guarantees that the major amount of the light output is still collected within a short pulse recording time.}, language = {en} } @article{StreunBrandenburgLarueetal.2006, author = {Streun, M. and Brandenburg, G. and Larue, H. and Parl, C. and Ziemons, Karl}, title = {The data acquisition system of ClearPET neuro - a small animal PET scanner}, series = {IEEE Transactions on Nuclear Science}, volume = {53}, journal = {IEEE Transactions on Nuclear Science}, number = {3}, isbn = {0018-9499}, pages = {700 -- 703}, year = {2006}, abstract = {The Crystal Clear Collaboration has developed a modular system for a small animal PET scanner (ClearPET). The modularity allows the assembly of scanners of different sizes and characteristics in order to satisfy the specific needs of the individual member institutions. The system performs depth of interaction detection by using a phoswich arrangement combining LSO and LuYAP scintillators which are coupled to Multichannel Photomultipliers (PMTs). For each PMT a free running 40 MHz ADC digitizes the signal and the complete scintillation pulse is sampled by an FPGA and sent with 20 MB/s to a PC for preprocessing. The pulse provides information about the gamma energy and the scintillator material which identifies the interaction layer. Furthermore, the exact pulse starting time is obtained from the sampled data. This is important as no hardware coincidence detection is implemented. All single events are recorded and coincidences are identified by software. The system in J{\"u}lich (ClearPET Neuro) is equipped with 10240 crystals on 80 PMTs. The paper will present an overview of the data acquisition system.}, language = {en} } @article{StreunBrandenburgKhodaverdietal.2006, author = {Streun, M. and Brandenburg, G. and Khodaverdi, M. and Larue, H. and Parl, C. and Ziemons, Karl}, title = {Timemark correction for the ClearPET™ scanners}, series = {2005 IEEE Nuclear Science Symposium Conference Record, Vol. 4}, journal = {2005 IEEE Nuclear Science Symposium Conference Record, Vol. 4}, isbn = {1082-3654}, pages = {2057 -- 2060}, year = {2006}, abstract = {The small animal PET scanners developed by the Crystal Clear Collaboration (ClearPETtrade) detect coincidences by analyzing timemarks which are attached to each event. The scanners are able to save complete single list mode data which allows analysis and modification of the timemarks after data acquisition. The timemarks are obtained from the digitally sampled detector pulses by calculating the baseline crossing of the rising edge of the pulse which is approximated as a straight line. But the limited sampling frequency causes a systematic error in the determination of the timemark. This error depends on the phase of the sampling clock at the time of the event. A statistical method that corrects these errors will be presented}, language = {en} } @article{StreunBrandenburgBroekeletal.2004, author = {Streun, M. and Brandenburg, G. and Br{\"o}kel, M. and Fuss, L. and Larue, H. and Parl, C. and Zimmermann, E. and Ziemons, Karl and Halling, H.}, title = {The ClearPET data acquisition}, series = {2003 IEEE Nuclear Science Symposium Conference Record, Vol. 5}, journal = {2003 IEEE Nuclear Science Symposium Conference Record, Vol. 5}, issn = {1082-3654}, pages = {3097 -- 3100}, year = {2004}, abstract = {Within the Crystal Clear Collaboration a modular system for a small animal PET scanner (ClearPET™) has been developed. The modularity allows the assembly of scanners of different sizes and characteristics in order to fit the specific needs of the individual member institutions. Now a first demonstrator is being completed in Julich. The system performs depth of interaction detection by using a phoswich arrangement combining LSO and LuYAP scintillators which are coupled to multi-channel photomultipliers (PMTs). A free-running ADC digitizes the signal from the PMT and the complete scintillation pulses are sampled by an FPGA and sent with 20 MB/S to a PC for preprocessing. The pulse provides information about the gamma energy and the scintillator material which identifies the interaction layer. Furthermore, the exact pulse starting time is obtained from the sampled data. This is important as no hardware coincidence detection is implemented. All single events are recorded and coincidences are identified by software. An advantage of that is that the coincidence window and the dimensions of the field of view can be adjusted easily. The ClearPET™ demonstrator is equipped with 10240 crystals on 80 PMTs. This paper presents an overview of the data acquisition system.}, language = {en} } @article{StreunBeerHombachetal.2008, author = {Streun, M. and Beer, S. and Hombach, T. and Jahnke, S. and Khodaverdi, M. and Larue, H. and Minwuyelet, S. and Parl, C. and Roeb, G. and Schurr, U. and Ziemons, Karl}, title = {PlanTIS: A positron emission tomograph for imaging 11C transport in plants}, series = {2007 IEEE Nuclear Science Symposium Conference Record, Vol. 6}, journal = {2007 IEEE Nuclear Science Symposium Conference Record, Vol. 6}, isbn = {1082-3654}, pages = {4110 -- 4112}, year = {2008}, abstract = {Plant growth and transport processes are highly dynamic. They are characterized by plant-internal control processes and by strong interactions with the spatially and temporally varying environment. Analysis of structure- function relations of growth and transport in plants will strongly benefit from the development of non-invasive techniques. PlanTIS (Plant Tomographic Imaging System) is designed for non-destructive 3D-imaging of positron emitting radiotracers. It will permit functional analysis of the dynamics of carbon distribution in plants including bulky organs. It will be applicable for screening transport properties of plants to evaluate e.g. temperature adaptation of genetically modified plants. PlanTIS is a PET scanner dedicated to monitor the dynamics of the 11C distribution within a plant while or after assimilation of 11CO2. Front end electronics and data acquisition architecture of the scanner are based on the ClearPETTM system [1]. Four detector modules form one of two opposing detector blocks. Optionally, a hardware coincidence detection between the blocks can be applied. In general the scan duration is rather long (~ 1 hour) compared to the decay time of 11C (20 min). As a result the count rates can vary over a wide range and accurate dead time correction is necessary.}, language = {en} } @inproceedings{StreunAlKaddoumParletal.2012, author = {Streun, M. and Al-Kaddoum, R. and Parl, C. and Pietrzyk, U. and Ziemons, Karl and Waasen, S. van}, title = {Simulation studies of optical photons in monolithic block scintillators}, series = {2011 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)}, booktitle = {2011 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-4673-0120-6 (electronic ISBN)}, doi = {10.1109/NSSMIC.2011.6154621}, pages = {1380 -- 1382}, year = {2012}, abstract = {The interest in PET detectors with monolithic block scintillators is growing. In order to obtain high spatial resolutions dedicated positioning algorithms are required. But even an ideal algorithm can only deliver information which is provided by the detector. In this simulation study we investigated the light distribution on one surface of cuboid LSO scintillators of different size. Scintillators with a large aspect ratio (small footprint and large height) showed significant position information only for a minimum interaction depth of the gamma particle. The results allow a quantitative estimate for a useful aspect ratio.}, language = {en} } @article{StreeseKotliarDeiserothetal.2020, author = {Streese, Lukas and Kotliar, Konstantin and Deiseroth, Arne and Infanger, Denis and Gugleta, Konstantin and Schmaderer, Christoph and Hanssen, Henner}, title = {Retinal endothelial function in cardiovascular risk patients: A randomized controlled exercise trial}, series = {Scandinavian Journal of Medicine and Science in Sports}, volume = {30}, journal = {Scandinavian Journal of Medicine and Science in Sports}, number = {2}, publisher = {Wiley}, address = {Oxford}, issn = {1600-0838}, doi = {10.1111/sms.13560}, pages = {272 -- 280}, year = {2020}, abstract = {The aim of this study was to investigate, for the first time, the effects of high-intensity interval training (HIIT) on retinal microvascular endothelial function in cardiovascular (CV) risk patients. In the randomized controlled trial, middle-aged and previously sedentary patients with increased CV risk (aged 58 ± 6 years) with ≥ two CV risk factors were randomized into a 12-week HIIT (n = 33) or control group (CG, n = 36) with standard physical activity recommendations. A blinded examiner measured retinal endothelial function by flicker light-induced maximal arteriolar (ADmax) and venular (VDmax) dilatation as well as the area under the arteriolar (AFarea) and venular (VFarea) flicker curve using a retinal vessel analyzer. Standardized assessments of CV risk factors, cardiorespiratory fitness, and retinal endothelial function were performed before and after HIIT. HIIT reduced body mass index, fat mass, and low-density lipoprotein and increased muscle mass and peak oxygen uptake (VO2peak). Both ADmax (pre: 2.7 ± 2.1\%, post: 3.0 ± 2.2\%, P = .018) and AFarea (pre: 32.6 ± 28.4\%*s, post: 37.7 ± 30.6\%*s, P = .016) increased after HIIT compared with CG (ADmax, pre: 3.2 ± 1.8\%, post: 2.9 ± 1.8\%, P = .254; AFarea, pre: 41.6 ± 28.5\%*s, post: 37.8 ± 27.0\%*s, P = .186). Venular function remained unchanged after HIIT. There was a significant association between ∆-change VO2peak and ∆-changes ADmax and AFarea (P = .026, R² = 0.073; P = .019, R² = 0.081, respectively). 12-weeks of HIIT improved retinal endothelial function in middle-aged patients with increased CV risk independent of the reduction in classical CV risk factors. Exercise has the potential to reverse or at least postpone progression of small vessel disease in older adults with increased CV risk under standard medication. Dynamic retinal vessel analysis seems to be a sensitive tool to detect treatment effects of exercise interventions on retinal microvascular endothelial function in middle-aged individuals with increased CV risk.}, language = {en} }