@article{StreunBrandenburgBroekeletal.2004, author = {Streun, M. and Brandenburg, G. and Br{\"o}kel, M. and Fuss, L. and Larue, H. and Parl, C. and Zimmermann, E. and Ziemons, Karl and Halling, H.}, title = {The ClearPET data acquisition}, series = {2003 IEEE Nuclear Science Symposium Conference Record, Vol. 5}, journal = {2003 IEEE Nuclear Science Symposium Conference Record, Vol. 5}, issn = {1082-3654}, pages = {3097 -- 3100}, year = {2004}, abstract = {Within the Crystal Clear Collaboration a modular system for a small animal PET scanner (ClearPET™) has been developed. The modularity allows the assembly of scanners of different sizes and characteristics in order to fit the specific needs of the individual member institutions. Now a first demonstrator is being completed in Julich. The system performs depth of interaction detection by using a phoswich arrangement combining LSO and LuYAP scintillators which are coupled to multi-channel photomultipliers (PMTs). A free-running ADC digitizes the signal from the PMT and the complete scintillation pulses are sampled by an FPGA and sent with 20 MB/S to a PC for preprocessing. The pulse provides information about the gamma energy and the scintillator material which identifies the interaction layer. Furthermore, the exact pulse starting time is obtained from the sampled data. This is important as no hardware coincidence detection is implemented. All single events are recorded and coincidences are identified by software. An advantage of that is that the coincidence window and the dimensions of the field of view can be adjusted easily. The ClearPET™ demonstrator is equipped with 10240 crystals on 80 PMTs. This paper presents an overview of the data acquisition system.}, language = {en} } @article{StreunBeerHombachetal.2008, author = {Streun, M. and Beer, S. and Hombach, T. and Jahnke, S. and Khodaverdi, M. and Larue, H. and Minwuyelet, S. and Parl, C. and Roeb, G. and Schurr, U. and Ziemons, Karl}, title = {PlanTIS: A positron emission tomograph for imaging 11C transport in plants}, series = {2007 IEEE Nuclear Science Symposium Conference Record, Vol. 6}, journal = {2007 IEEE Nuclear Science Symposium Conference Record, Vol. 6}, isbn = {1082-3654}, pages = {4110 -- 4112}, year = {2008}, abstract = {Plant growth and transport processes are highly dynamic. They are characterized by plant-internal control processes and by strong interactions with the spatially and temporally varying environment. Analysis of structure- function relations of growth and transport in plants will strongly benefit from the development of non-invasive techniques. PlanTIS (Plant Tomographic Imaging System) is designed for non-destructive 3D-imaging of positron emitting radiotracers. It will permit functional analysis of the dynamics of carbon distribution in plants including bulky organs. It will be applicable for screening transport properties of plants to evaluate e.g. temperature adaptation of genetically modified plants. PlanTIS is a PET scanner dedicated to monitor the dynamics of the 11C distribution within a plant while or after assimilation of 11CO2. Front end electronics and data acquisition architecture of the scanner are based on the ClearPETTM system [1]. Four detector modules form one of two opposing detector blocks. Optionally, a hardware coincidence detection between the blocks can be applied. In general the scan duration is rather long (~ 1 hour) compared to the decay time of 11C (20 min). As a result the count rates can vary over a wide range and accurate dead time correction is necessary.}, language = {en} } @inproceedings{StreunAlKaddoumParletal.2012, author = {Streun, M. and Al-Kaddoum, R. and Parl, C. and Pietrzyk, U. and Ziemons, Karl and Waasen, S. van}, title = {Simulation studies of optical photons in monolithic block scintillators}, series = {2011 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)}, booktitle = {2011 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-4673-0120-6 (electronic ISBN)}, doi = {10.1109/NSSMIC.2011.6154621}, pages = {1380 -- 1382}, year = {2012}, abstract = {The interest in PET detectors with monolithic block scintillators is growing. In order to obtain high spatial resolutions dedicated positioning algorithms are required. But even an ideal algorithm can only deliver information which is provided by the detector. In this simulation study we investigated the light distribution on one surface of cuboid LSO scintillators of different size. Scintillators with a large aspect ratio (small footprint and large height) showed significant position information only for a minimum interaction depth of the gamma particle. The results allow a quantitative estimate for a useful aspect ratio.}, language = {en} } @article{StreeseKotliarDeiserothetal.2020, author = {Streese, Lukas and Kotliar, Konstantin and Deiseroth, Arne and Infanger, Denis and Gugleta, Konstantin and Schmaderer, Christoph and Hanssen, Henner}, title = {Retinal endothelial function in cardiovascular risk patients: A randomized controlled exercise trial}, series = {Scandinavian Journal of Medicine and Science in Sports}, volume = {30}, journal = {Scandinavian Journal of Medicine and Science in Sports}, number = {2}, publisher = {Wiley}, address = {Oxford}, issn = {1600-0838}, doi = {10.1111/sms.13560}, pages = {272 -- 280}, year = {2020}, abstract = {The aim of this study was to investigate, for the first time, the effects of high-intensity interval training (HIIT) on retinal microvascular endothelial function in cardiovascular (CV) risk patients. In the randomized controlled trial, middle-aged and previously sedentary patients with increased CV risk (aged 58 ± 6 years) with ≥ two CV risk factors were randomized into a 12-week HIIT (n = 33) or control group (CG, n = 36) with standard physical activity recommendations. A blinded examiner measured retinal endothelial function by flicker light-induced maximal arteriolar (ADmax) and venular (VDmax) dilatation as well as the area under the arteriolar (AFarea) and venular (VFarea) flicker curve using a retinal vessel analyzer. Standardized assessments of CV risk factors, cardiorespiratory fitness, and retinal endothelial function were performed before and after HIIT. HIIT reduced body mass index, fat mass, and low-density lipoprotein and increased muscle mass and peak oxygen uptake (VO2peak). Both ADmax (pre: 2.7 ± 2.1\%, post: 3.0 ± 2.2\%, P = .018) and AFarea (pre: 32.6 ± 28.4\%*s, post: 37.7 ± 30.6\%*s, P = .016) increased after HIIT compared with CG (ADmax, pre: 3.2 ± 1.8\%, post: 2.9 ± 1.8\%, P = .254; AFarea, pre: 41.6 ± 28.5\%*s, post: 37.8 ± 27.0\%*s, P = .186). Venular function remained unchanged after HIIT. There was a significant association between ∆-change VO2peak and ∆-changes ADmax and AFarea (P = .026, R² = 0.073; P = .019, R² = 0.081, respectively). 12-weeks of HIIT improved retinal endothelial function in middle-aged patients with increased CV risk independent of the reduction in classical CV risk factors. Exercise has the potential to reverse or at least postpone progression of small vessel disease in older adults with increased CV risk under standard medication. Dynamic retinal vessel analysis seems to be a sensitive tool to detect treatment effects of exercise interventions on retinal microvascular endothelial function in middle-aged individuals with increased CV risk.}, language = {en} } @inproceedings{StopforthFerreinSteinbauer2015, author = {Stopforth, Riaan and Ferrein, Alexander and Steinbauer, Gerald}, title = {Europe and South African collaboration on the Mechatronics and Robotics systems as part of the SA Robotics Center}, series = {ICRA 2015 Developing Countries Forum}, booktitle = {ICRA 2015 Developing Countries Forum}, pages = {3 S.}, year = {2015}, abstract = {Mechatronics consist of the integration of mechanical engineering, electronic integration and computer science/ engineering. These broad fields are essential for robotic systems, yet it makes it difficult for the researchers to specialize and be experts in all these fields. Collaboration between researchers allow for the integration of experience and specialization, to allow optimized systems. Collaboration between the European countries and South Africa is critical, as each country has different resources available, which the other countries might not have. Applications with the need for approval of any restrictions, can also be obtained easier in some countries compared to others, thus preventing the delays of research. Some problems that have been experienced are discussed, with the Robotics Center of South Africa as a possible solution.}, language = {en} } @inproceedings{StopforthDavrajhFerrein2017, author = {Stopforth, Riaan and Davrajh, Shaniel and Ferrein, Alexander}, title = {South African robotics entity for a collaboration initiative}, series = {Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech), 2016}, booktitle = {Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech), 2016}, publisher = {IEEE}, isbn = {978-1-5090-3335-5}, doi = {10.1109/RoboMech.2016.7813144}, pages = {1 -- 6}, year = {2017}, language = {en} } @inproceedings{StopforthDavrajhFerrein2017, author = {Stopforth, Riaan and Davrajh, Shaniel and Ferrein, Alexander}, title = {Design considerations of the duo fugam dual rotor UAV}, series = {2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech)}, booktitle = {2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech)}, isbn = {978-1-5386-2314-5}, doi = {10.1109/RoboMech.2017.8261115}, pages = {7 -- 13}, year = {2017}, language = {en} } @inproceedings{StollenwerkRiekeDahmenetal.2016, author = {Stollenwerk, Dominik and Rieke, C. and Dahmen, Markus and Pieper, Martin}, title = {Biogas Production Modelling : A Control System Engineering Approach}, series = {IOP Conference Series: Earth and Environmental Science. Bd. 32}, booktitle = {IOP Conference Series: Earth and Environmental Science. Bd. 32}, issn = {1755-1315}, doi = {10.1088/1755-1315/32/1/012008}, pages = {012008/1 -- 012008/4}, year = {2016}, language = {en} } @inproceedings{StollenwerkKuvarakulKuperjans2013, author = {Stollenwerk, Dominik and Kuvarakul, T. and Kuperjans, Isabel}, title = {Renewable energy supply for power dominated, energy intense production processes - a systematic conversion approach for the anodizing process}, series = {IOP conference series: Earth and environmental science (EES)}, volume = {Vol. 16}, booktitle = {IOP conference series: Earth and environmental science (EES)}, number = {H. 1}, issn = {1755-1315}, pages = {012142/1 -- 012142/4}, year = {2013}, language = {en} } @article{StojnicSassKlaassenOrlovicetal.2013, author = {Stojnic, Srdjan and Sass-Klaassen, Ute G. M. and Orlovic, Sasa and Matovic, Bratislav and Eilmann, Britta}, title = {Plastic growth response of European beech provenances to dry site conditions}, volume = {34}, number = {4}, publisher = {Brill}, address = {Leiden}, issn = {0928-1541 (Print)}, doi = {10.1163/22941932-00000038}, pages = {475 -- 484}, year = {2013}, language = {en} }