@inproceedings{LeiseBreuerAltherretal.2020, author = {Leise, Philipp and Breuer, Tim and Altherr, Lena and Pelz, Peter F.}, title = {Development, validation and assessment of a resilient pumping system}, series = {Proceedings of the Joint International Resilience Conference, JIRC2020}, booktitle = {Proceedings of the Joint International Resilience Conference, JIRC2020}, isbn = {978-90-365-5095-6}, pages = {97 -- 100}, year = {2020}, abstract = {The development of resilient technical systems is a challenging task, as the system should adapt automatically to unknown disturbances and component failures. To evaluate different approaches for deriving resilient technical system designs, we developed a modular test rig that is based on a pumping system. On the basis of this example system, we present metrics to quantify resilience and an algorithmic approach to improve resilience. This approach enables the pumping system to automatically react on unknown disturbances and to reduce the impact of component failures. In this case, the system is able to automatically adapt its topology by activating additional valves. This enables the system to still reach a minimum performance, even in case of failures. Furthermore, timedependent disturbances are evaluated continuously, deviations from the original state are automatically detected and anticipated in the future. This allows to reduce the impact of future disturbances and leads to a more resilient system behaviour.}, language = {en} } @inproceedings{KreyerMuellerEsch2020, author = {Kreyer, J{\"o}rg and M{\"u}ller, Marvin and Esch, Thomas}, title = {A Map-Based Model for the Determination of Fuel Consumption for Internal Combustion Engines as a Function of Flight Altitude}, series = {Deutscher Luft- und Raumfahrtkongress 2019, „Luft- und Raumfahrt - technologische Br{\"u}cke in die Zukunft", Darmstadt, 30. September bis 2. Oktober 2019}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2019, „Luft- und Raumfahrt - technologische Br{\"u}cke in die Zukunft", Darmstadt, 30. September bis 2. Oktober 2019}, publisher = {Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt - Lilienthal-Oberth e.V}, address = {Bonn}, doi = {10.25967/490162}, pages = {13 Seiten}, year = {2020}, language = {en} } @inproceedings{KirschMatareFerreinetal.2020, author = {Kirsch, Maximilian and Matar{\´e}, Victor and Ferrein, Alexander and Schiffer, Stefan}, title = {Integrating golog++ and ROS for Practical and Portable High-level Control}, series = {12th International Conference on Agents and Artificial Intelligence}, booktitle = {12th International Conference on Agents and Artificial Intelligence}, doi = {10.5220/0008984406920699}, year = {2020}, language = {en} } @inproceedings{KaschSchmidtEichleretal.2020, author = {Kasch, Susanne and Schmidt, Thomas and Eichler, Fabian and Thurn, Laura and Jahn, Simon and Bremen, Sebastian}, title = {Solution approaches and process concepts for powder bed-based melting of glass}, series = {Industrializing Additive Manufacturing. Proceedings of AMPA2020}, booktitle = {Industrializing Additive Manufacturing. Proceedings of AMPA2020}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-54333-4 (Print)}, doi = {10.1007/978-3-030-54334-1_7}, pages = {82 -- 95}, year = {2020}, abstract = {In the study, the process chain of additive manufacturing by means of powder bed fusion will be presented based on the material glass. In order to reliably process components additively, new concepts with different solutions were developed and investigated. Compared to established metallic materials, the properties of glass materials differ significantly. Therefore, the process control was adapted to the material glass in the investigations. With extensive parameter studies based on various glass powders such as borosilicate glass and quartz glass, scientifically proven results on powder bed fusion of glass are presented. Based on the determination of the particle properties with different methods, extensive investigations are made regarding the melting behavior of glass by means of laser beams. Furthermore, the experimental setup was steadily expanded. In addition to the integration of coaxial temperature measurement and regulation, preheating of the building platform is of major importance. This offers the possibility to perform 3D printing at the transformation temperatures of the glass materials. To improve the component's properties, the influence of a subsequent heat treatment was also investigated. The experience gained was incorporated into a new experimental system, which allows a much better exploration of the 3D printing of glass. Currently, studies are being conducted to improve surface texture, building accuracy, and geometrical capabilities using three-dimensional specimen. The contribution shows the development of research in the field of 3D printing of glass, gives an insight into the machine and process engineering as well as an outlook on the possibilities and applications.}, language = {en} } @inproceedings{IomdinaKiselevaKotliaretal.2020, author = {Iomdina, Elena N. and Kiseleva, Anna A. and Kotliar, Konstantin and Luzhnov, Petr V.}, title = {Quantification of Choroidal Blood Flow Using the OCT-A System Based on Voxel Scan Processing}, series = {2020 International Conference on Biomedical Innovations and Applications (BIA)}, booktitle = {2020 International Conference on Biomedical Innovations and Applications (BIA)}, isbn = {978-1-7281-7073-2}, doi = {10.1109/BIA50171.2020.9244511}, pages = {41 -- 44}, year = {2020}, language = {en} } @inproceedings{HoegenDonckerRuetters2020, author = {Hoegen, Anne von and Doncker, Rik W. De and R{\"u}tters, Ren{\´e}}, title = {Teaching Digital Control of Operational Amplifier Processes with a LabVIEW Interface and Embedded Hardware}, series = {The 23rd International Conference on Electrical Machines and Systems (ICEMS), Hamamatsu, Japan}, booktitle = {The 23rd International Conference on Electrical Machines and Systems (ICEMS), Hamamatsu, Japan}, doi = {10.23919/ICEMS50442.2020.9290928}, pages = {1117 -- 1122}, year = {2020}, language = {en} } @inproceedings{HippeFingerGoettenetal.2020, author = {Hippe, Jonas and Finger, Felix and G{\"o}tten, Falk and Braun, Carsten}, title = {Propulsion System Qualification of a 25 kg VTOL-UAV: Hover Performance of Single and Coaxial Rotors and Wind-Tunnel Experiments on Cruise Propellers}, series = {Deutscher Luft- und Raumfahrtkongress - DLRK 2020}, booktitle = {Deutscher Luft- und Raumfahrtkongress - DLRK 2020}, year = {2020}, language = {en} } @inproceedings{HauggKreyerKemperetal.2020, author = {Haugg, Albert Thomas and Kreyer, J{\"o}rg and Kemper, Hans and Hatesuer, Katerina and Esch, Thomas}, title = {Heat exchanger for ORC. adaptability and optimisation potentials}, series = {IIR International Rankine 2020 Conference}, booktitle = {IIR International Rankine 2020 Conference}, doi = {10.18462/iir.rankine.2020.1224}, pages = {10 Seiten}, year = {2020}, abstract = {The recovery of waste heat requires heat exchangers to extract it from a liquid or gaseous medium into another working medium, a refrigerant. In Organic Rankine Cycles (ORC) on Combustion Engines there are two major heat sources, the exhaust gas and the water/glycol fluid from the engine's cooling circuit. A heat exchanger design must be adapted to the different requirements and conditions resulting from the heat sources, fluids, system configurations, geometric restrictions, and etcetera. The Stacked Shell Cooler (SSC) is a new and very specific design of a plate heat exchanger, created by AKG, which allows with a maximum degree of freedom the optimization of heat exchange rate and the reduction of the related pressure drop. This optimization in heat exchanger design for ORC systems is even more important, because it reduces the energy consumption of the system and therefore maximizes the increase in overall efficiency of the engine.}, language = {en} } @inproceedings{GoettenFingerHavermannetal.2020, author = {G{\"o}tten, Falk and Finger, Felix and Havermann, Marc and Braun, Carsten and Marino, Matthew and Bil, Cees}, title = {Full Configuration Drag Estimation of Small-to-Medium Range UAVs and its Impact on Initial Sizing Optimization}, series = {Deutscher Luft- und Raumfahrtkongress - DLRK 2020}, booktitle = {Deutscher Luft- und Raumfahrtkongress - DLRK 2020}, year = {2020}, language = {en} } @inproceedings{GeibenGoettenHavermann2020, author = {Geiben, Benedikt and G{\"o}tten, Falk and Havermann, Marc}, title = {Aerodynamic analysis of a winged sub-orbital spaceplane}, series = {Deutscher Luft- und Raumfahrtkongress - DLRK 2020}, booktitle = {Deutscher Luft- und Raumfahrtkongress - DLRK 2020}, year = {2020}, language = {en} }