@article{LanzlSeidovaErbenetal.2010, author = {Lanzl, Ines M. and Seidova, Seid-Fatima and Erben, A. and Th{\"u}rmel, K. and Kotliar, Konstantin}, title = {Diffuse stromale Hornhauttr{\"u}bungen und Ver{\"a}nderungen der H{\"a}nde}, series = {Der Ophthalmologe}, volume = {107}, journal = {Der Ophthalmologe}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1433-0423}, doi = {10.1007/s00347-009-2066-2}, pages = {363 -- 365}, year = {2010}, abstract = {Bilaterale stromale Hornhauttr{\"u}bungen sind f{\"u}r den Augenarzt eine differenzialdiagnostische Herausforderung. Im folgenden Beitrag werden 2 Patieninnen (30 und 36 Jahre) mit unterschiedlich stark ausgepr{\"a}gter stromaler diffuser Hornhauttr{\"u}bung vorgestellt. Patientin 1 war kleinw{\"u}chsig (114 cm) und Patientin 2 normal groß (172 cm). Beide Patientinnen wiesen ver{\"a}nderte Gelenkstrukturen an Hand und Fußgelenken sowie diffuse stromale Hornhauttr{\"u}bungen auf. Des Weiteren lagen eine Mitral- und Aorteninsuffizienz (Patientin 1) bzw. eine Aorteninsuffizienz (Patientin 2) vor. Die stromalen diffusen Hornhauttr{\"u}bungen ließen im Zusammenhang mit den Gelenkver{\"a}nderungen ein Scheie-Syndrom vermuten. Therapeutisch ist bei Patienten mit Visusminderung eine (lamell{\"a}re) Keratoplastik sinnvoll.}, language = {de} } @incollection{LanzlSeidovaDuehringetal.2009, author = {Lanzl, I. and Seidova, S.-F. and D{\"u}hring, C. von and Kotliar, Konstantin}, title = {Befunde der dynamischen Gef{\"a}ßanalyse am Auge bei Gesunden und Glaukom-Patienten mit praxisrelevanter Bedeutung}, series = {Mikrozirkulation beim Glaukom}, booktitle = {Mikrozirkulation beim Glaukom}, editor = {Erb, Carl}, publisher = {Elsevier}, address = {Amsterdam}, pages = {33 -- 39}, year = {2009}, language = {de} } @article{LanzlKotliar2017, author = {Lanzl, I. and Kotliar, Konstantin}, title = {K{\"o}nnen Anti-VEGF-Injektionen Glaukom oder okul{\"a}re Hypertension verursachen?}, series = {Klinische Monatsbl{\"a}tter f{\"u}r Augenheilkunde}, volume = {234}, journal = {Klinische Monatsbl{\"a}tter f{\"u}r Augenheilkunde}, number = {2}, publisher = {Thieme}, address = {Stuttgart}, issn = {0023-2165}, doi = {10.1055/s-0043-101819}, pages = {191 -- 193}, year = {2017}, language = {de} } @article{LaackLeversStaat2013, author = {Laack, Walter van and Levers, A. and Staat, Manfred}, title = {Gonarthrosetherapie auf Kernspinresonanzbasis mit MBST-Vierjahresbeobachtungen}, series = {Orthop{\"a}dische Nachrichten : Zeitung f{\"u}r Orthop{\"a}die und Unfallchirurgie. 2013, H. 7/8}, journal = {Orthop{\"a}dische Nachrichten : Zeitung f{\"u}r Orthop{\"a}die und Unfallchirurgie. 2013, H. 7/8}, publisher = {Biermann}, address = {K{\"o}ln}, issn = {1437-2193}, pages = {13}, year = {2013}, language = {de} } @article{KuehnHaugnerStaatetal.2004, author = {K{\"u}hn, Raoul-Roman and Haugner, Werner and Staat, Manfred and Sponagel, Stefan}, title = {A Two Phase Mixture Model based on Bone Observation}, year = {2004}, abstract = {An optimization method is developed to describe the mechanical behaviour of the human cancellous bone. The method is based on a mixture theory. A careful observation of the behaviour of the bone material leads to the hypothesis that the bone density is controlled by the principal stress trajectories (Wolff's law). The basic idea of the developed method is the coupling of a scalar value via an eigenvalue problem to the principal stress trajectories. On the one hand this theory will permit a prediction of the reaction of the biological bone structure after the implantation of a prosthesis, on the other hand it may be useful in engineering optimization problems. An analytical example shows its efficiency.}, subject = {Knochen}, language = {en} } @article{KurzLinderTrzewiketal.2010, author = {Kurz, R. and Linder, Peter and Trzewik, J{\"u}rgen and R{\"u}ffer, M. and Artmann, Gerhard and Digel, Ilya and Rothermel, A. and Robitzki, A. and Temiz Artmann, Ayseg{\"u}l}, title = {Contractile tension and beating rates of self-exciting monolayers and 3D-tissue constructs of neonatal rat cardiomyocytes}, series = {Medical and Biological Engineering and Computing}, volume = {48}, journal = {Medical and Biological Engineering and Computing}, number = {1}, publisher = {Springer Nature}, address = {Cham}, issn = {1741-0444}, doi = {10.1007/s11517-009-0552-y}, pages = {59 -- 65}, year = {2010}, abstract = {The CellDrum technology (The term 'CellDrum technology' includes a couple of slightly different technological setups for measuring lateral mechanical tension in various types of cell monolayers or 3D-tissue constructs) was designed to quantify the contraction rate and mechanical tension of self-exciting cardiac myocytes. Cells were grown either within flexible, circular collagen gels or as monolayer on top of respective 1-mum thin silicone membranes. Membrane and cells were bulged outwards by air pressure. This biaxial strain distribution is rather similar the beating, blood-filled heart. The setup allowed presetting the mechanical residual stress level externally by adjusting the centre deflection, thus, mimicking hypertension in vitro. Tension was measured as oscillating differential pressure change between chamber and environment. A 0.5-mm thick collagen-cardiac myocyte tissue construct induced after 2 days of culturing (initial cell density 2 x 10(4) cells/ml), a mechanical tension of 1.62 +/- 0.17 microN/mm(2). Mechanical load is an important growth regulator in the developing heart, and the orientation and alignment of cardiomyocytes is stress sensitive. Therefore, it was necessary to develop the CellDrum technology with its biaxial stress-strain distribution and defined mechanical boundary conditions. Cells were exposed to strain in two directions, radially and circumferentially, which is similar to biaxial loading in real heart tissues. Thus, from a biomechanical point of view, the system is preferable to previous setups based on uniaxial stretching.}, language = {en} } @article{KurulganDemirciLinderDemircietal.2009, author = {Kurulgan Demirci, Eylem and Linder, Peter and Demirci, Taylan and Trzewik, J{\"u}rgen and Digel, Ilya and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Contractile tension of endothelial cells: An LPS based in-vitro sepsis model}, series = {IUBMB Life. 61 (2009), H. 3}, journal = {IUBMB Life. 61 (2009), H. 3}, publisher = {Wiley}, address = {Weinheim}, isbn = {1521-6543}, pages = {307 -- 308}, year = {2009}, language = {en} } @inproceedings{KurulganDemirciLinderDemircietal.2010, author = {Kurulgan Demirci, Eylem and Linder, Peter and Demirci, Taylan and Gierkowski, Jessica R. and Digel, Ilya and Gossmann, Matthias and Temiz Artmann, Ayseg{\"u}l}, title = {rhAPC reduces the endothelial cell permeability via a decrease of cellular mechanical contractile tensions : [abstract]}, year = {2010}, abstract = {In this study, the CellDrum technology quanitfying cellular mechanical tension on a pico-scale was used to investigate the effect of LPS (lipopolysaccharide) on HAoEC (Human Aortic Endothelial Cell) tension.}, subject = {Endothelzelle}, language = {en} } @article{KurulganDemirciDemirciLinderetal.2012, author = {Kurulgan Demirci, Eylem and Demirci, Taylan and Linder, Peter and Trzewik, J{\"u}rgen and Gierkowski, Jessica Ricarda and Gossmann, Matthias and Kayser, Peter and Porst, Dariusz and Digel, Ilya and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {rhAPC reduces the endothelial cell permeability via a decrease of contractile tensions induced by endothelial cells}, series = {Journal of Bioscience and Bioengineering}, volume = {113}, journal = {Journal of Bioscience and Bioengineering}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1347-4421}, doi = {10.1016/j.jbiosc.2012.03.019}, pages = {212 -- 219}, year = {2012}, abstract = {All cells generate contractile tension. This strain is crucial for mechanically controlling the cell shape, function and survival. In this study, the CellDrum technology quantifying cell's (the cellular) mechanical tension on a pico-scale was used to investigate the effect of lipopolysaccharide (LPS) on human aortic endothelial cell (HAoEC) tension. The LPS effect during gram-negative sepsis on endothelial cells is cell contraction causing endothelium permeability increase. The aim was to finding out whether recombinant activated protein C (rhAPC) would reverse the endothelial cell response in an in-vitro sepsis model. In this study, the established in-vitro sepsis model was confirmed by interleukin 6 (IL-6) levels at the proteomic and genomic levels by ELISA, real time-PCR and reactive oxygen species (ROS) activation by florescence staining. The thrombin cellular contraction effect on endothelial cells was used as a positive control when the CellDrum technology was applied. Additionally, the Ras homolog gene family, member A (RhoA) mRNA expression level was checked by real time-PCR to support contractile tension results. According to contractile tension results, the mechanical predominance of actin stress fibers was a reason of the increased endothelial contractile tension leading to enhanced endothelium contractility and thus permeability enhancement. The originality of this data supports firstly the basic measurement principles of the CellDrum technology and secondly that rhAPC has a beneficial effect on sepsis influenced cellular tension. The technology presented here is promising for future high-throughput cellular tension analysis that will help identify pathological contractile tension responses of cells and prove further cell in-vitro models.}, language = {en} } @article{KurulganDemirciDemirciTrzewiketal.2011, author = {Kurulgan Demirci, Eylem and Demirci, T. and Trzewik, J{\"u}rgen and Linder, Peter and Karakulah, G. and Artmann, Gerhard and Sakizli, M. and Temiz Artmann, Ayseg{\"u}l}, title = {Genome-Wide Gene Expression Analysis of NIH 3T3 Cell Line Under Mechanical Stimulation}, series = {Cellular and molecular bioengineering. 4 (2011), H. 1}, journal = {Cellular and molecular bioengineering. 4 (2011), H. 1}, publisher = {Springer}, address = {Berlin}, isbn = {1865-5025}, pages = {46 -- 55}, year = {2011}, language = {en} }