@inproceedings{CrookstonBung2022, author = {Crookston, Brian M. and Bung, Daniel Bernhard}, title = {Application of RGB-D cameras in hydraulic laboratory studies}, series = {Proceedings of the 39th IAHR World Congress}, booktitle = {Proceedings of the 39th IAHR World Congress}, editor = {Ortega-S{\´a}nchez, Miguel}, publisher = {International Association for Hydro-Environment Engineering and Research (IAHR)}, address = {Madrid}, isbn = {978-90-832612-1-8}, issn = {2521-7119 (print)}, doi = {10.3850/IAHR-39WC252171192022964}, pages = {5127 -- 5133}, year = {2022}, abstract = {Non-intrusive measuring techniques have attained a lot of interest in relation to both hydraulic modeling and prototype applications. Complimenting acoustic techniques, significant progress has been made for the development of new optical methods. Computer vision techniques can help to extract new information, e. g. high-resolution velocity and depth data, from videos captured with relatively inexpensive, consumer-grade cameras. Depth cameras are sensors providing information on the distance between the camera and observed features. Currently, sensors with different working principles are available. Stereoscopic systems reference physical image features (passive system) from two perspectives; in order to enhance the number of features and improve the results, a sensor may also estimate the disparity from a detected light to its original projection (active stereo system). In the current study, the RGB-D camera Intel RealSense D435, working on such stereo vision principle, is used in different, typical hydraulic modeling applications. All tests have been conducted at the Utah Water Research Laboratory. This paper will demonstrate the performance and limitations of the RGB-D sensor, installed as a single camera and as camera arrays, applied to 1) detect the free surface for highly turbulent, aerated hydraulic jumps, for free-falling jets and for an energy dissipation basin downstream of a labyrinth weir and 2) to monitor local scours upstream and downstream of a Piano Key Weir. It is intended to share the authors' experiences with respect to camera settings, calibration, lightning conditions and other requirements in order to promote this useful, easily accessible device. Results will be compared to data from classical instrumentation and the literature. It will be shown that even in difficult application, e. g. the detection of a highly turbulent, fluctuating free-surface, the RGB-D sensor may yield similar accuracy as classical, intrusive probes.}, language = {en} } @incollection{CresserHaegerLeuchsetal.1982, author = {Cresser, J. D. and H{\"a}ger, J. and Leuchs, G. and Rateike, Franz-Matthias and Walther, H.}, title = {Resonance fluorescence of atoms in strong monochromatic laser fields}, series = {Dissipative systems in quantum optics. Ed. by Rodolfo Bonifacio. Topics in current physics. Vol. 27}, booktitle = {Dissipative systems in quantum optics. Ed. by Rodolfo Bonifacio. Topics in current physics. Vol. 27}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-642-81719-9}, doi = {10.1007/978-3-642-81717-5_3}, pages = {21 -- 59}, year = {1982}, abstract = {The investigation of atomic resonance fluorescence has always been of special interest as a means for the determination of atomic parameters. In addition, information on the interaction mechanism between atoms and radiation can be obtained. In the standard fluorescence experiment the frequency distribution of the incident photons is larger than the natural width of the respective transition; as a consequence the correlation time in the photon-atom interaction is determined by the lifetime of the atoms in the excited state. With the development of lasers and especially of tunable dye lasers in recent years it became possible to study the case where the incident radiation has a spectral distribution which is narrower than the natural width. This corresponds to a correlation time of the incoming light wave which is much longer than the excited-state lifetime. In this chapter a survey of experiments on the resonance fluorescence of atoms in monochromatic laser fields will be given.}, language = {en} } @article{CosmaKesslerGebhardtetal.2020, author = {Cosma, Cosmin and Kessler, Julia and Gebhardt, Andreas and Campbell, Ian and Balc, Nicolae}, title = {Improving the Mechanical Strength of Dental Applications and Lattice Structures SLM Processed}, series = {Materials}, volume = {13}, journal = {Materials}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {1996-1944}, doi = {10.3390/ma13040905}, pages = {1 -- 18}, year = {2020}, abstract = {To manufacture custom medical parts or scaffolds with reduced defects and high mechanical characteristics, new research on optimizing the selective laser melting (SLM) parameters are needed. In this work, a biocompatible powder, 316L stainless steel, is characterized to understand the particle size, distribution, shape and flowability. Examination revealed that the 316L particles are smooth, nearly spherical, their mean diameter is 39.09 μm and just 10\% of them hold a diameter less than 21.18 μm. SLM parameters under consideration include laser power up to 200 W, 250-1500 mm/s scanning speed, 80 μm hatch spacing, 35 μm layer thickness and a preheated platform. The effect of these on processability is evaluated. More than 100 samples are SLM-manufactured with different process parameters. The tensile results show that is possible to raise the ultimate tensile strength up to 840 MPa, adapting the SLM parameters for a stable processability, avoiding the technological defects caused by residual stress. Correlating with other recent studies on SLM technology, the tensile strength is 20\% improved. To validate the SLM parameters and conditions established, complex bioengineering applications such as dental bridges and macro-porous grafts are SLM-processed, demonstrating the potential to manufacture medical products with increased mechanical resistance made of 316L.}, language = {en} } @article{CornelisGivanoudiYongabietal.2019, author = {Cornelis, Peter and Givanoudi, Stella and Yongabi, Derick and Iken, Heiko and Duw{\´e}, Sam and Deschaume, Olivier and Robbens, Johan and Dedecker, Peter and Bartic, Carmen and W{\"u}bbenhorst, Michael and Sch{\"o}ning, Michael Josef and Heyndrickx, Marc and Wagner, Patrick}, title = {Sensitive and specific detection of E. coli using biomimetic receptors in combination with a modified heat-transfer method}, series = {Biosensors and Bioelectronics}, volume = {136}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2019.04.026}, pages = {97 -- 105}, year = {2019}, language = {en} } @book{CordewinerSchoernerKochetal.1983, author = {Cordewiner, Hans-Josef and Schoerner, M. and Koch, R. and Bachner, E.}, title = {Untersuchungen zum Einsatz eines CAD-Systems fuer den Konstruktionsbereich der Zentralabteilung Allgemeine Technologie der Kernforschungsanlage Juelich}, publisher = {Gesellschaft fuer Elektronische Informationsverarbeitung}, address = {Aachen}, year = {1983}, language = {de} } @book{Cordewiner1982, author = {Cordewiner, Hans-Josef}, title = {Einsatz und Entwicklung der Datenverarbeitung im Bereich der Konstruktion}, publisher = {Zentralbibliothek d. Kernforschungsanlage}, address = {J{\"u}lich}, pages = {I, 31 S. : Ill., graph. Darst.}, year = {1982}, language = {de} } @book{Cordewiner1979, author = {Cordewiner, Hans-Josef}, title = {Numerische Berechnung des Tritium-Verhaltens von Kugelhaufenreaktoren am Beispiel des AVR-Reaktors}, publisher = {Zentralbibliothek d. Kernforschungsanlage J{\"u}lich GmbH}, address = {J{\"u}lich}, pages = {96, 19 S. : 16 graph. Darst.}, year = {1979}, language = {de} } @book{Cordewiner1983, author = {Cordewiner, Hans-Josef}, title = {Fertigung und Test der Metallfaltbelaege des TEXTOR-Vakuumgefaesses}, publisher = {Kernforschungsanlage Juelich GmbH}, address = {J{\"u}lich}, year = {1983}, language = {de} } @incollection{Cordewiner2013, author = {Cordewiner, Hans-Josef}, title = {Konstruktion im Wandel: von der technischen Zeichnung zum 3D-Produktmodell}, series = {Innovation durch Kooperation : wie der Mittelstand durch Zusammenarbeit mit den Hochschulen seine Wettbewerbsf{\"a}higkeit steigert : Festschrift f{\"u}r Prof. Dr. rer. nat. Johannes Gartzen / Thomas Gartzen, Ute Gartzen (Hrsg.)}, booktitle = {Innovation durch Kooperation : wie der Mittelstand durch Zusammenarbeit mit den Hochschulen seine Wettbewerbsf{\"a}higkeit steigert : Festschrift f{\"u}r Prof. Dr. rer. nat. Johannes Gartzen / Thomas Gartzen, Ute Gartzen (Hrsg.)}, publisher = {Apprimus Verlag}, address = {Aachen}, isbn = {978--3-86359-136-6}, pages = {115 -- 121}, year = {2013}, language = {de} } @inproceedings{CordesGligorevicBlicharski2019, author = {Cordes, Sven and Gligorevic, Snjezana and Blicharski, Peter}, title = {Analysis of sine precision influence on DOA estimation using the MUSIC algorithm}, series = {2019 20th International Radar Symposium (IRS)}, booktitle = {2019 20th International Radar Symposium (IRS)}, isbn = {978-3-7369-9860-5}, doi = {10.23919/IRS.2019.8768162}, pages = {1 -- 10}, year = {2019}, language = {en} }