@techreport{ButenwegDargelHoechstetal.2012, author = {Butenweg, Christoph and Dargel, H.-J. and H{\"o}chst, T. and Holtschoppen, B. and Schwarz, R. and Sippel, M.}, title = {Der Lastfall Erdbeben im Anlagenbau : Leitfaden : Entwurf, Bemessung und Konstruktion von Tragwerken und Komponenten in der chemischen Industrie in Anlehnung an die DIN EN 1998-1}, publisher = {Verband der Chemischen Industrie e.V.}, address = {Frankfurt}, pages = {20 S.}, year = {2012}, language = {de} } @article{ButenwegBursiPaolaccietal.2021, author = {Butenweg, Christoph and Bursi, Oreste S. and Paolacci, Fabrizio and Marinković, Marko and Lanese, Igor and Nardin, Chiara and Quinci, Gianluca}, title = {Seismic performance of an industrial multi-storey frame structure with process equipment subjected to shake table testing}, series = {Engineering Structures}, volume = {243}, journal = {Engineering Structures}, number = {15}, editor = {Yang, J.}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0141-0296}, doi = {10.1016/j.engstruct.2021.112681}, year = {2021}, abstract = {Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of process equipment and multiple and simultaneous release of hazardous substances. Nonetheless, current standards for seismic design of industrial facilities are considered inadequate to guarantee proper safety conditions against exceptional events entailing loss of containment and related consequences. On these premises, the SPIF project -Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities- was proposed within the framework of the European H2020 SERA funding scheme. In detail, the objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial multi-storey frame structure equipped with complex process components by means of shaking table tests. Along this main vein and in a performance-based design perspective, the issues investigated in depth are the interaction between a primary moment resisting frame (MRF) steel structure and secondary process components that influence the performance of the whole system; and a proper check of floor spectra predictions. The evaluation of experimental data clearly shows a favourable performance of the MRF structure, some weaknesses of local details due to the interaction between floor crossbeams and process components and, finally, the overconservatism of current design standards w.r.t. floor spectra predictions.}, language = {en} } @inproceedings{ButenwegBursiNardinetal.2021, author = {Butenweg, Christoph and Bursi, Oreste S. and Nardin, Chiara and Lanese, Igor and Pavese, Alberto and Marinković, Marko and Paolacci, Fabrizio and Quinci, Gianluca}, title = {Experimental investigation on the seismic performance of a multi-component system for major-hazard industrial facilities}, series = {Conference Proceedings: Pressure Vessels \& Piping Conference Vol.5}, booktitle = {Conference Proceedings: Pressure Vessels \& Piping Conference Vol.5}, publisher = {American Society of Mechanical Engineers (ASME)}, address = {New York}, isbn = {9780791885352}, doi = {10.1115/PVP2021-61696}, pages = {8 Seiten}, year = {2021}, abstract = {Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behaviour of the test structure and of its relative several installations is investigated. Furthermore, both process components and primary structure interactions are considered and analyzed. Several PGA-scaled artificial ground motions are applied to study the seismic response at different levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the experimental setup of the investigated structure and installations, selected measurement data and describes the obtained damage. Furthermore, important findings for the definition of performance limits, the effectiveness of floor response spectra in industrial facilities will be presented and discussed.}, language = {en} } @incollection{ButenwegBollenbeck2003, author = {Butenweg, Christoph and Bollenbeck, S.}, title = {Mauerwerksbauten unter Erdbebenbelastung}, series = {Bauwerke und Erdbeben}, booktitle = {Bauwerke und Erdbeben}, publisher = {Vieweg}, address = {Wiesbaden}, isbn = {3-528-02574-3}, pages = {385 -- 397}, year = {2003}, language = {de} } @incollection{ButenwegBollenbeck2003, author = {Butenweg, Christoph and Bollenbeck, S.}, title = {Mauerwerksbauten}, series = {Bauwerke und Erdbeben / Konstantin Meskouris ; Klaus-G. Hinzen}, booktitle = {Bauwerke und Erdbeben / Konstantin Meskouris ; Klaus-G. Hinzen}, publisher = {Vieweg + Teubner}, address = {Wiesbaden}, isbn = {3-528-02574-3 (Print) ; 978-3-322-96831-9 (E-Book)}, doi = {10.1007/978-3-322-96831-9_7}, pages = {385 -- 397}, year = {2003}, language = {de} } @inproceedings{ButenwegBettziecheKuhlmannetal.2005, author = {Butenweg, Christoph and Bettzieche, Volker and Kuhlmann, Wolfram and Meskouris, Konstantin}, title = {Die baudynamische Beurteilung von Talsperren am Beispiel der F{\"u}rwiggetalsperre}, series = {Berichte der Fachtagung Baustatik - Baupraxis 9 am 14. und 15. M{\"a}rz 2005 in Dresden / Institut f{\"u}r Statik und Dynamik der Tragwerke, TU Dresden, Deutschland}, booktitle = {Berichte der Fachtagung Baustatik - Baupraxis 9 am 14. und 15. M{\"a}rz 2005 in Dresden / Institut f{\"u}r Statik und Dynamik der Tragwerke, TU Dresden, Deutschland}, publisher = {Inst. f{\"u}r Statik und Dynamik der Tragwerke}, address = {Dresden}, organization = {Fachtagung Baustatik - Baupraxis <8, 2005, Dresden>}, isbn = {3-00-015456-6}, pages = {73 -- 84}, year = {2005}, language = {de} } @inproceedings{Butenweg2022, author = {Butenweg, Christoph}, title = {Seismic design and evaluation of industrial facilities}, series = {The Third European Conference on Earthquake Engineering and Seismology}, booktitle = {The Third European Conference on Earthquake Engineering and Seismology}, editor = {Vacareanu, Radu and Ionescu, Constantin}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-15103-3}, issn = {2524-342X}, doi = {10.1007/978-3-031-15104-0}, pages = {449 -- 464}, year = {2022}, abstract = {Industrial facilities must be thoroughly designed to withstand seismic actions as they exhibit an increased loss potential due to the possibly wideranging damage consequences and the valuable process engineering equipment. Past earthquakes showed the social and political consequences of seismic damage to industrial facilities and sensitized the population and politicians worldwide for the possible hazard emanating from industrial facilities. However, a holistic approach for the seismic design of industrial facilities can presently neither be found in national nor in international standards. The introduction of EN 1998-4 of the new generation of Eurocode 8 will improve the normative situation with specific seismic design rules for silos, tanks and pipelines and secondary process components. The article presents essential aspects of the seismic design of industrial facilities based on the new generation of Eurocode 8 using the example of tank structures and secondary process components. The interaction effects of the process components with the primary structure are illustrated by means of the experimental results of a shaking table test of a three story moment resisting steel frame with different process components. Finally, an integrated approach of digital plant models based on building information modelling (BIM) and structural health monitoring (SHM) is presented, which provides not only a reliable decision-making basis for operation, maintenance and repair but also an excellent tool for rapid assessment of seismic damage.}, language = {en} } @inproceedings{Butenweg2012, author = {Butenweg, Christoph}, title = {Eurocode 8 : Erdbebenauslegung von Tragwerken}, series = {Eurocodes 2012 kompakt - Chancen nutzen : 36. Darmst{\"a}dter Massivbauseminar Zukunftsf{\"a}higes Planen und Bauen, 7. und 8. M{\"a}rz}, booktitle = {Eurocodes 2012 kompakt - Chancen nutzen : 36. Darmst{\"a}dter Massivbauseminar Zukunftsf{\"a}higes Planen und Bauen, 7. und 8. M{\"a}rz}, publisher = {Freunde des Inst. f{\"u}r Massivbau der TU}, address = {Darmstadt}, organization = {Darmst{\"a}dter Massivbauseminar <36, 2012>}, pages = {257 -- 272}, year = {2012}, language = {de} } @phdthesis{Butenweg2000, author = {Butenweg, Christoph}, title = {Bemessung und Optimierung von Stahlbetontragwerken unter vorwiegend ruhender Belastung mit der Methode der finiten Elemente. (Fortschritt-Berichte VDI : Reihe 4, Bauingenieurwesen ; 160)}, publisher = {VDI-Verl.}, address = {D{\"u}sseldorf}, isbn = {3-18-316004-8}, pages = {XV, 130 S.}, year = {2000}, language = {de} } @misc{Butenweg1994, author = {Butenweg, Christoph}, title = {Einsatz der Grafikbibliothek PEX zur Darstellung der Informationen aus Pre-Processing bei der Simulation von Grundwasserstr{\"o}mungen}, year = {1994}, language = {de} }