@article{HoettgesArnoldRouve1989, author = {H{\"o}ttges, J{\"o}rg and Arnold, Uwe and Rouv{\´e}, Gerhard}, title = {Combined Digital Image and Finite Element Analysis of Mixing in Compound Open Channel Flow / Arnold, U.; J. H{\"o}ttges; G. Rouv{\´e}}, series = {Refined flow modelling and turbulence measurements : proceedings of the Third International Symposium Tokyo, Japan 26 - 28 July, 1988 / ed. by Y. Iwasa. Scientific Organizing Committee of the Third International Symposium on Refined Flow Modelling and Tur}, journal = {Refined flow modelling and turbulence measurements : proceedings of the Third International Symposium Tokyo, Japan 26 - 28 July, 1988 / ed. by Y. Iwasa. Scientific Organizing Committee of the Third International Symposium on Refined Flow Modelling and Tur}, publisher = {Universal Acad. Press}, address = {Tokyo}, isbn = {4-946443-03-7}, pages = {569 -- 576}, year = {1989}, language = {en} } @article{CheenakulaGriebelMontagetal.2023, author = {Cheenakula, Dheeraja and Griebel, Kai and Montag, David and Gr{\"o}mping, Markus}, title = {Concept development of a mainstream deammonification and comparison with conventional process in terms of energy, performance and economical construction perspectives}, series = {Frontiers in Microbiology}, volume = {14}, journal = {Frontiers in Microbiology}, number = {11155235}, editor = {Huang, Xiaowu}, publisher = {Frontiers}, issn = {1664-302X}, doi = {10.3389/fmicb.2023.1155235}, pages = {1 -- 15}, year = {2023}, abstract = {Deammonification for nitrogen removal in municipal wastewater in temperate and cold climate zones is currently limited to the side stream of municipal wastewater treatment plants (MWWTP). This study developed a conceptual model of a mainstream deammonification plant, designed for 30,000 P.E., considering possible solutions corresponding to the challenging mainstream conditions in Germany. In addition, the energy-saving potential, nitrogen elimination performance and construction-related costs of mainstream deammonification were compared to a conventional plant model, having a single-stage activated sludge process with upstream denitrification. The results revealed that an additional treatment step by combining chemical precipitation and ultra-fine screening is advantageous prior the mainstream deammonification. Hereby chemical oxygen demand (COD) can be reduced by 80\% so that the COD:N ratio can be reduced from 12 to 2.5. Laboratory experiments testing mainstream conditions of temperature (8-20°C), pH (6-9) and COD:N ratio (1-6) showed an achievable volumetric nitrogen removal rate (VNRR) of at least 50 gN/(m3∙d) for various deammonifying sludges from side stream deammonification systems in the state of North Rhine-Westphalia, Germany, where m3 denotes reactor volume. Assuming a retained Norganic content of 0.0035 kgNorg./(P.E.∙d) from the daily loads of N at carbon removal stage and a VNRR of 50 gN/(m3∙d) under mainstream conditions, a resident-specific reactor volume of 0.115 m3/(P.E.) is required for mainstream deammonification. This is in the same order of magnitude as the conventional activated sludge process, i.e., 0.173 m3/(P.E.) for an MWWTP of size class of 4. The conventional plant model yielded a total specific electricity demand of 35 kWh/(P.E.∙a) for the operation of the whole MWWTP and an energy recovery potential of 15.8 kWh/(P.E.∙a) through anaerobic digestion. In contrast, the developed mainstream deammonification model plant would require only a 21.5 kWh/(P.E.∙a) energy demand and result in 24 kWh/(P.E.∙a) energy recovery potential, enabling the mainstream deammonification model plant to be self-sufficient. The retrofitting costs for the implementation of mainstream deammonification in existing conventional MWWTPs are nearly negligible as the existing units like activated sludge reactors, aerators and monitoring technology are reusable. However, the mainstream deammonification must meet the performance requirement of VNRR of about 50 gN/(m3∙d) in this case.}, language = {en} } @article{BienerSasse1993, author = {Biener, Ernst and Sasse, T.}, title = {Construction and rehabilitation of landfill shafts}, series = {Sardinia 93 : Fourth International Landfill Symposium "Barrier systems, environmental aspects, upgrading and remediation, siting, monofills, effects of waste pretreatment, landfilling in developing countries" ; 11 - 15 October 1993, S. Margherita di Pula (Cagliari), Sardinia, Italy ; proceedings / coord. by Thomas H. Christensen ... - Bd. 1}, journal = {Sardinia 93 : Fourth International Landfill Symposium "Barrier systems, environmental aspects, upgrading and remediation, siting, monofills, effects of waste pretreatment, landfilling in developing countries" ; 11 - 15 October 1993, S. Margherita di Pula (Cagliari), Sardinia, Italy ; proceedings / coord. by Thomas H. Christensen ... - Bd. 1}, publisher = {CISA, Environmental Sanitary Engineering Centre}, address = {Cagliari}, pages = {451 -- 460}, year = {1993}, language = {en} } @article{BienerSasse1994, author = {Biener, Ernst and Sasse, T.}, title = {Construction of composite lining systems under unfavourable weather conditions}, series = {Landfilling of waste: barriers / ed. by T. H. Christensen; R. Cossu; R. Stegmann. - 1. Aufl.}, journal = {Landfilling of waste: barriers / ed. by T. H. Christensen; R. Cossu; R. Stegmann. - 1. Aufl.}, publisher = {Spon}, address = {London [u.a.]}, isbn = {0419159908}, pages = {183 -- 200}, year = {1994}, language = {en} } @article{WoliszSchuetzBlankeetal.2017, author = {Wolisz, Henryk and Sch{\"u}tz, Thomas and Blanke, Tobias and Hagenkamp, Markus and Kohrn, Markus and Wesseling, Mark and M{\"u}ller, Dirk}, title = {Cost optimal sizing of smart buildings' energy system components considering changing end-consumer electricity markets}, series = {Energy}, volume = {137}, journal = {Energy}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.energy.2017.06.025}, pages = {715 -- 728}, year = {2017}, language = {en} } @article{Bung2011, author = {Bung, Daniel B.}, title = {Developing flow in skimming flow regime on embankment stepped spillways}, series = {Journal of hydraulic research}, volume = {Vol. 49}, journal = {Journal of hydraulic research}, number = {Iss. 5}, publisher = {Taylor \& Francis}, address = {London}, issn = {1814-2079 (E-Journal); 0022-1686 (Print)}, pages = {639 -- 648}, year = {2011}, language = {en} } @article{ValeroBung2016, author = {Valero, Daniel and Bung, Daniel B.}, title = {Development of the interfacial air layer in the non-aerated region of high-velocity spillway flows: Instabilities growth, entrapped air and influence on the self-aeration onset}, series = {International Journal of Multiphase Flow}, volume = {84}, journal = {International Journal of Multiphase Flow}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0301-9322}, doi = {10.1016/j.ijmultiphaseflow.2016.04.012}, pages = {66 -- 74}, year = {2016}, abstract = {Self-aeration is traditionally explained by the water turbulent boundary layer outer edge intersection with the free surface. This paper presents a discussion on the commonly accepted hypothesis behind the computation of the critical point of self-aeration in spillway flows and a new formulation is proposed based on the existence of a developing air flow over the free surface. Upstream of the inception point of self-aeration, some surface roughening has been often reported in previous studies which consequently implies some entrapped air transport and air-water flows coupling. Such air flow is proven in this study by presenting measured air velocities and computing the air boundary layer thickness for a 1V:2H smooth chute flow. Additionally, the growth rate of free surface waves has been analysed by means of Ultrasonic Sensors measurements, obtaining also the entrapped air concentration. High-speed camera imaging has been used for qualitative study of the flow perturbations.}, language = {en} } @article{ValeroBungCrookston2018, author = {Valero, Daniel and Bung, Daniel B. and Crookston, B.M.}, title = {Energy dissipation of a Type III basin under design and adverse conditions for stepped and smooth spillways}, series = {Journal of Hydraulic Engineering}, volume = {144}, journal = {Journal of Hydraulic Engineering}, number = {7}, publisher = {ASCE}, address = {Reston, Va.}, issn = {0733-9429}, doi = {10.1061/(ASCE)HY.1943-7900.0001482}, year = {2018}, abstract = {New information regarding the influence of a stepped chute on the hydraulic performance of the United States Bureau of Reclamation (Reclamation) Type III hydraulic jump stilling basin is presented for design (steady) and adverse (decreasing tailwater) conditions. Using published experimental data and computational fluid dynamics (CFD) models, this paper presents a detailed comparison between smooth-chute and stepped-chute configurations for chute slopes of 0.8H:1V and 4H:1V and Froude numbers (F) ranging from 3.1 to 9.5 for a Type III basin designed for F = 8. For both stepped and smooth chutes, the relative role of each basin element was quantified, up to the most hydraulic extreme case of jump sweep-out. It was found that, relative to a smooth chute, the turbulence generated by a stepped chute causes a higher maximum velocity decay within the stilling basin, which represents an enhancement of the Type III basin's performance but also a change in the relative role of the basin elements. Results provide insight into the ability of the CFD models [unsteady Reynolds-averaged Navier-Stokes (RANS) equations with renormalization group (RNG) k-ϵ turbulence model and volume-of-fluid (VOF) for free surface tracking] to predict the transient basin flow structure and velocity profiles. Type III basins can perform adequately with a stepped chute despite the effects steps have on the relative role of each basin element. It is concluded that the classic Type III basin design, based upon methodology by reclamation specific to smooth chutes, can be hydraulically improved for the case of stepped chutes for design and adverse flow conditions using the information presented herein.}, language = {en} } @article{KerpenBungValeroetal.2017, author = {Kerpen, Nils B. and Bung, Daniel B. and Valero, Daniel and Schlurmann, Torsten}, title = {Energy dissipation within the wave run-up at stepped revetments}, series = {Journal of Ocean University of China}, volume = {16}, journal = {Journal of Ocean University of China}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1993-5021}, doi = {10.1007/s11802-017-3355-z}, pages = {649 -- 654}, year = {2017}, language = {en} } @article{BienerSasse1988, author = {Biener, Ernst and Sasse, T.}, title = {Experience with new techniques in slurry cutoff wall construction}, series = {ISWA 88, proceedings of the 5th International Solid Wastes Conference : September 11 - 16th, 1988, Copenhagen, Denmark / ed. by Lizzi Andersen ... - Vol. 1 : Oral presentations}, journal = {ISWA 88, proceedings of the 5th International Solid Wastes Conference : September 11 - 16th, 1988, Copenhagen, Denmark / ed. by Lizzi Andersen ... - Vol. 1 : Oral presentations}, publisher = {Acad. Press}, address = {London [u.a.]}, isbn = {0-12-058451-4}, pages = {41 -- 46}, year = {1988}, language = {en} }