@inproceedings{OertelBung2012, author = {Oertel, Mario and Bung, Daniel B.}, title = {Characteristics of cross-bar block ramp flows}, series = {Hydraulic structures into the 21st century : 4th IAHR International Symposium on Hydraulic Structures : 9.-11.2.2012, Porto}, booktitle = {Hydraulic structures into the 21st century : 4th IAHR International Symposium on Hydraulic Structures : 9.-11.2.2012, Porto}, organization = {International Symposium on Hydraulic Structures <4, 2012, Porto>}, isbn = {978-989-8509-01-7}, pages = {Elektronisch publiziert}, year = {2012}, language = {en} } @article{SchusserPoghossianBaeckeretal.2012, author = {Schusser, Sebastian and Poghossian, Arshak and B{\"a}cker, Matthias and Leinhos, Marcel and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Characterization of biodegradable polymers with capacitive field-effect sensors}, series = {Sensors and actuators B: Chemical}, volume = {187}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2012.07.099}, pages = {2 -- 7}, year = {2012}, abstract = {In vitro studies of the degradation kinetic of biopolymers are essential for the design and optimization of implantable biomedical devices. In the presented work, a field-effect capacitive sensor has been applied for the real-time and in situ monitoring of degradation processes of biopolymers for the first time. The polymer-covered field-effect sensor is, in principle, capable to detect any changes in bulk, surface and interface properties of the polymer induced by degradation processes. The feasibility of this approach has been experimentally proven by using the commercially available biomedical polymer poly(D,L-lactic acid) (PDLLA) as a model system. PDLLA films of different thicknesses were deposited on the Ta₂O₅-gate surface of the field-effect structure from a polymer solution by means of spin-coating method. The polymer-modified field-effect sensors have been characterized by means of capacitance-voltage and impedance-spectroscopy method. The degradation of the PDLLA was accelerated by changing the degradation medium from neutral (pH 7.2) to alkaline (pH 9) condition, resulting in drastic changes in the capacitance and impedance spectra of the polymer-modified field-effect sensor.}, language = {en} } @article{MiyamotoIchimuraWagneretal.2012, author = {Miyamoto, K. and Ichimura, H. and Wagner, Torsten and Yoshinobu, T. and Sch{\"o}ning, Michael Josef}, title = {Chemical Imaging of ion Diffusion in a Microfluidic Channel}, series = {Procedia Engineering}, journal = {Procedia Engineering}, number = {47}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2012.09.289}, pages = {886 -- 889}, year = {2012}, abstract = {The chemical imaging sensor is a chemical sensor which is capable of visualizing the spatial distribution of chemical species in sample solution. In this study, a novel measurement system based on the chemical imaging sensor was developed to observe the inside of a Y-shaped microfluidic channel while injecting two sample solutions from two branches. From the collected chemical images, it was clearly observed that the injected solutions formed laminar flows in the microfluidic channel. In addition, ion diffusion across the laminar flows was observed. This label-free method can acquire quantitative data of ion distribution and diffusion in microfluidic devices, which can be used to determine the diffusion coefficients, and therefore, the molecular weights of chemical species in the sample solution.}, language = {en} } @article{SchoeningBaecker2012, author = {Sch{\"o}ning, Michael Josef and B{\"a}cker, Matthias}, title = {Chip-basierte Sensoren f{\"u}r die Biotechnik}, volume = {13}, number = {2}, publisher = {BIOCOM}, address = {Berlin}, issn = {1611-0854}, year = {2012}, language = {de} } @article{HuckPoghossianWagneretal.2012, author = {Huck, Christina and Poghossian, Arshak and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Combined amperometric/field-effect sensor for the detection of dissolved hydrogen}, series = {Sensors and actuators B: Chemical}, volume = {187}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2012.10.050}, pages = {168 -- 173}, year = {2012}, abstract = {Real-time and reliable monitoring of the biogas process is crucial for a stable and efficient operation of biogas production in order to avoid digester breakdowns. The concentration of dissolved hydrogen (H₂) represents one of the key parameters for biogas process control. In this work, a one-chip integrated combined amperometric/field-effect sensor for monitoring the dissolved H₂ concentration has been developed for biogas applications. The combination of two different transducer principles might allow a more accurate and reliable measurement of dissolved H₂ as an early warning indicator of digester failures. The feasibility of the approach has been demonstrated by simultaneous amperometric/field-effect measurements of dissolved H₂ concentrations in electrolyte solutions. Both, the amperometric and the field-effect transducer show a linear response behaviour in the H₂ concentration range from 0.1 to 3\% (v/v) with a slope of 198.4 ± 13.7 nA/\% (v/v) and 14.9 ± 0.5 mV/\% (v/v), respectively.}, language = {en} } @inproceedings{TakenagaWernerSawadaetal.2012, author = {Takenaga, Shoko and Werner, Frederik and Sawada, Kazuaki and Sch{\"o}ning, Michael Josef}, title = {Comparison of label-free ACh image sensors based on CCD and LAPS}, isbn = {978-3-9813484-2-2}, doi = {10.5162/IMCS2012/4.2.6}, pages = {356 -- 359}, year = {2012}, language = {en} } @incollection{HoffschmidtAlexopoulosRauetal.2012, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and Rau, Christoph and Sattler, Johannes, Christoph and Anthrakidis, Anette and Teixeira Boura, Cristiano Jos{\´e} and O'Connor, P. and Hilger, Patrick}, title = {Concentrating solar power}, series = {Comprehensive renewable energy / ed. Ali Sayigh. Vol. 3: Solar thermal systems: components and applications}, volume = {3}, booktitle = {Comprehensive renewable energy / ed. Ali Sayigh. Vol. 3: Solar thermal systems: components and applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-08-087872-0}, doi = {10.1016/B978-0-08-087872-0.00319-X}, pages = {595 -- 636}, year = {2012}, language = {en} } @inproceedings{KoetterDeckerDetzleretal.2012, author = {K{\"o}tter, Jens and Decker, Stefan and Detzler, Raphael and Sch{\"a}fer, Jochen and Schmitz, Mark and Herrmann, Ulf}, title = {Cost Reduction of Solar Fields with HelioTrough Collector}, publisher = {FLAGSOL}, address = {K{\"o}ln}, pages = {9 S. : Ill., graph. Darst.}, year = {2012}, language = {en} } @inproceedings{FissabreSchmidtSonnleitner2012, author = {Fissabre, Anke and Schmidt, Klaus and Sonnleitner, Andrea}, title = {Das Lehnsm{\"u}hlschloß in Ortrand - ein s{\"a}chsisches Herrenhaus der Renaissance}, series = {Wandel im Wohnbau zwischen Gotik und Barock : die s{\"a}chsisch-b{\"o}hmische Entwicklung im {\"u}berregionalen Vergleich}, booktitle = {Wandel im Wohnbau zwischen Gotik und Barock : die s{\"a}chsisch-b{\"o}hmische Entwicklung im {\"u}berregionalen Vergleich}, publisher = {Jonas}, address = {Marburg}, isbn = {978-3-89445-390-9}, pages = {487 -- 501}, year = {2012}, language = {de} } @inproceedings{BeckerEggertFleischeretal.2012, author = {Becker, J{\"o}rg and Eggert, Mathias and Fleischer, Stefan and Heddier, Marcel and Knackstedt, Ralf}, title = {Data Warehouse Design and Legal Visualization - The Applicability of H2 for Reporting}, series = {Proceedings of the 23rd Australasian Conference on Information Systems 2012}, booktitle = {Proceedings of the 23rd Australasian Conference on Information Systems 2012}, pages = {11 S.}, year = {2012}, language = {de} }