@inproceedings{WeilPoghossianSchoeningetal.2012, author = {Weil, M. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Cherstvy, A.}, title = {Electrical monitoring of layer-by-layer adsorption of oppositely charged macromolecules by means of capacitive field-effect devices}, isbn = {978-3-9813484-2-2}, doi = {10.5162/IMCS2012/P2.5.2}, pages = {1575 -- 1578}, year = {2012}, language = {en} } @article{PoghossianWeilCherstvyetal.2013, author = {Poghossian, Arshak and Weil, M. and Cherstvy, A. G. and Sch{\"o}ning, Michael Josef}, title = {Electrical monitoring of polyelectrolyte multilayer formation by means of capacitive field-effect devices}, series = {Analytical and bioanalytical chemistry}, volume = {405}, journal = {Analytical and bioanalytical chemistry}, number = {20}, publisher = {Springer}, address = {Berlin}, issn = {1432-1130 ; 1618-2642}, doi = {10.1007/s00216-013-6951-9}, pages = {6425 -- 6436}, year = {2013}, abstract = {The semiconductor field-effect platform represents a powerful tool for detecting the adsorption and binding of charged macromolecules with direct electrical readout. In this work, a capacitive electrolyte-insulator-semiconductor (EIS) field-effect sensor consisting of an Al-p-Si-SiO2 structure has been applied for real-time in situ electrical monitoring of the layer-by-layer formation of polyelectrolyte (PE) multilayers (PEM). The PEMs were deposited directly onto the SiO2 surface without any precursor layer or drying procedures. Anionic poly(sodium 4-styrene sulfonate) and cationic weak polyelectrolyte poly(allylamine hydrochloride) have been chosen as a model system. The effect of the ionic strength of the solution, polyelectrolyte concentration, number and polarity of the PE layers on the characteristics of the PEM-modified EIS sensors have been studied by means of capacitance-voltage and constant-capacitance methods. In addition, the thickness, surface morphology, roughness and wettabilityof the PE mono- and multilayers have been characterised by ellipsometry, atomic force microscopy and water contact-angle methods, respectively. To explain potential oscillations on the gate surface and signal behaviour of the capacitive field-effect EIS sensor modified with a PEM, a simplified electrostatic model that takes into account the reduced electrostatic screening of PE charges by mobile ions within the PEM has been proposed and discussed.}, language = {en} } @incollection{SchoeningPoghossianGluecketal.2014, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak and Gl{\"u}ck, Olaf and Thust, Marion}, title = {Electrochemical composition measurement}, series = {Measurement, instrumentation, and sensors handbook: electromagnetic, optical, radiation, chemical, and biomedical measuremen}, booktitle = {Measurement, instrumentation, and sensors handbook: electromagnetic, optical, radiation, chemical, and biomedical measuremen}, edition = {2nd ed.}, publisher = {CRC Pr.}, address = {Boca Raton, Fa.}, isbn = {978-1-4398-4891-3}, pages = {55-1 -- 55-54}, year = {2014}, language = {en} } @article{WeldenSchejaSchoeningetal.2018, author = {Welden, Rene and Scheja, Sabrina and Sch{\"o}ning, Michael Josef and Wagner, Patrick and Wagner, Torsten}, title = {Electrochemical Evaluation of Light-Addressable Electrodes Based on TiO2 for the Integration in Lab-on-Chip Systems}, series = {physica status solidi a : applications and materials sciences}, volume = {215}, journal = {physica status solidi a : applications and materials sciences}, number = {15}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201800150}, pages = {Article number 1800150}, year = {2018}, abstract = {In lab-on-chip systems, electrodes are important for the manipulation (e.g., cell stimulation, electrolysis) within such systems. An alternative to commonly used electrode structures can be a light-addressable electrode. Here, due to the photoelectric effect, the conducting area can be adjusted by modification of the illumination area which enables a flexible control of the electrode. In this work, titanium dioxide based light-addressable electrodes are fabricated by a sol-gel technique and a spin-coating process, to deposit a thin film on a fluorine-doped tin oxide glass. To characterize the fabricated electrodes, the thickness, and morphological structure are measured by a profilometer and a scanning electron microscope. For the electrochemical behavior, the dark current and the photocurrent are determined for various film thicknesses. For the spatial resolution behavior, the dependency of the photocurrent while changing the area of the illuminated area is studied. Furthermore, the addressing of single fluid compartments in a three-chamber system, which is added to the electrode, is demonstrated.}, language = {en} } @article{SchoeningGlueckThust1999, author = {Sch{\"o}ning, Michael Josef and Gl{\"u}ck, O. and Thust, M.}, title = {Electrochemical methods for the determination of chemical variables in aqueous media}, series = {The measurement, instrumentation, and sensors handbook / ed.-in-chief John G. Webster. In cooperation with IEEE Press}, journal = {The measurement, instrumentation, and sensors handbook / ed.-in-chief John G. Webster. In cooperation with IEEE Press}, publisher = {CRC Press}, address = {Boca Raton [u.a.]}, isbn = {0-8493-8347-1}, pages = {1 -- 49}, year = {1999}, language = {en} } @incollection{SchoeningPoghossianGluecketal.2014, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak and Gl{\"u}ck, Olaf and Thust, Marion}, title = {Electrochemical methods for the determination of chemical variables in aqueous media}, series = {Measurement, instrumentation, and sensors handbook / ed. by John G. Webster [u.a.] Vol. 2 : Electromagnetic, optical, radiation, chemical, and biomedical measurement}, booktitle = {Measurement, instrumentation, and sensors handbook / ed. by John G. Webster [u.a.] Vol. 2 : Electromagnetic, optical, radiation, chemical, and biomedical measurement}, publisher = {CRC Pr.}, address = {Boca Raton, Fla.}, isbn = {978-1-4398-4891-3}, pages = {55-1 -- 55-54}, year = {2014}, language = {en} } @article{BaeckerDellePoghossianetal.2011, author = {B{\"a}cker, Matthias and Delle, L. and Poghossian, Arshak and Biselli, Manfred and Zang, Werner and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Electrochemical sensor array for bioprocess monitoring}, series = {Electrochimica Acta (2011)}, volume = {56}, journal = {Electrochimica Acta (2011)}, number = {26}, publisher = {Elsevier}, address = {Amsterdam}, pages = {9673 -- 9678}, year = {2011}, language = {en} } @article{HonarvarfardGamellaChannaveerappaetal.2017, author = {Honarvarfard, Elham and Gamella, Maria and Channaveerappa, Devika and Darie, Costel C. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {Electrochemically Stimulated Insulin Release from a Modified Graphene-functionalized Carbon Fiber Electrode}, series = {Electroanalysis}, volume = {29}, journal = {Electroanalysis}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.201700095}, pages = {1543 -- 1553}, year = {2017}, abstract = {A graphene-functionalized carbon fiber electrode was modified with adsorbed polyethylenimine to introduce amino functionalities and then with trigonelline and 4-carboxyphenylboronic acid covalently bound to the amino groups. The trigonelline species containing quarterized pyridine groups produced positive charge on the electrode surface regardless of the pH value, while the phenylboronic acid species were neutral below pH 8 and negatively charged above pH 9 (note that their pKa=8.4). The total charge on the monolayer-modified electrode was positive at the neutral pH and negative at pH > 9. Note that 4-carboxyphenylboronic acid was attached to the electrode surface in molar excess to trigonelline, thus allowing the negative charge to dominate on the electrode surface at basic pH. Negatively charged fluorescent dye-labeled insulin (insulin-FITC) was loaded on the modified electrode surface at pH 7.0 due to its electrostatic attraction to the positively charged interface. The local pH in close vicinity to the electrode surface was increased to ca. 9-10 due to consumption of H+ ions upon electrochemical reduction of oxygen proceeding at the potential of -1.0 V (vs. Ag/AgCl) applied on the modified electrode. The process resulted in recharging of the electrode surface to the negative value due to the formation of the negative charge on the phenylboronic acid groups, thus resulting in the electrostatic repulsion of insulin-FITC and stimulating its release from the electrode surface. The insulin release was characterized by fluorescence spectroscopy (using the FITC-labeled insulin), by electrochemical measurements on an iridium oxide, IrOx, electrode and by mass spectrometry. The graphene-functionalized carbon fiber electrode demonstrated significant advantages in the signal-stimulated insulin release comparing with the carbon fiber electrode without the graphene species.}, language = {en} } @article{MorenoiCodinachsKloockSchoeningetal.2008, author = {Moreno i Codinachs, Lia and Kloock, Joachim P. and Sch{\"o}ning, Michael Josef and Baldi, Antoni and Ipatov, Andrey and Bratov, Andrey and Jimenez-Jorquera, Cecilia}, title = {Electronic integrated multisensor tongue applied to grape juice and wine analysis}, series = {Analyst. 133 (2008)}, journal = {Analyst. 133 (2008)}, isbn = {1364-5528}, pages = {1440 -- 1448}, year = {2008}, language = {en} } @article{MuribGrinsvenGrietenetal.2013, author = {Murib, M. S. and Grinsven, B. van and Grieten, L. and Janssens, S. D. and Vermeeren, V. and Eersels, K. and Broeders, J. and Ameloot, M. and Michiels, L. and Ceuninck, W. De and Haenen, K. and Sch{\"o}ning, Michael Josef and Wagner, Patrick}, title = {Electronic monitoring of chemical DNA denaturation on nanocrystalline diamond electrodes with different molarities and flow rates}, series = {Physica Status Solidi (A). Vol. 210 (2013), iss. 5}, journal = {Physica Status Solidi (A). Vol. 210 (2013), iss. 5}, publisher = {Wiley-VCH}, address = {Berlin}, issn = {0031-8965}, pages = {911 -- 917}, year = {2013}, language = {en} }