@article{AchtsnichtPourshahidiOffenhaeusseretal.2019, author = {Achtsnicht, Stefan and Pourshahidi, Ali Mohammad and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Multiplex detection of different magnetic beads using frequency scanning in magnetic frequency mixing technique}, series = {Sensors}, volume = {19}, journal = {Sensors}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s19112599}, pages = {13 Seiten}, year = {2019}, abstract = {In modern bioanalytical methods, it is often desired to detect several targets in one sample within one measurement. Immunological methods including those that use superparamagnetic beads are an important group of techniques for these applications. The goal of this work is to investigate the feasibility of simultaneously detecting different superparamagnetic beads acting as markers using the magnetic frequency mixing technique. The frequency of the magnetic excitation field is scanned while the lower driving frequency is kept constant. Due to the particles' nonlinear magnetization, mixing frequencies are generated. To record their amplitude and phase information, a direct digitization of the pickup-coil's signal with subsequent Fast Fourier Transformation is performed. By synchronizing both magnetic beads using frequency scanning in magnetic frequency mixing technique magnetic fields, a stable phase information is gained. In this research, it is shown that the amplitude of the dominant mixing component is proportional to the amount of superparamagnetic beads inside a sample. Additionally, it is shown that the phase does not show this behaviour. Excitation frequency scans of different bead types were performed, showing different phases, without correlation to their diverse amplitudes. Two commercially available beads were selected and a determination of their amount in a mixture is performed as a demonstration for multiplex measurements.}, language = {en} } @misc{BlottnerHastermannMuckeltetal.2019, author = {Blottner, Dieter and Hastermann, Maria and Muckelt, Paul and Albracht, Kirsten and Schoenrock, Britt and Salanova, Michele and Warner, Martin and Gunga, Hans-Christian and Stokes, Maria}, title = {MYOTONES - Inflight muscle health status monitoring during long-duration space missions onboard the International Space Station: a single case study}, series = {IAC Papers Archive}, journal = {IAC Papers Archive}, publisher = {Pergamon}, address = {Oxford}, issn = {00741795}, pages = {2 Seiten}, year = {2019}, abstract = {The MYOTONES experiment is the first to monitor changes in the basic biomechanical properties (tone, elasticity and stiffness) of the resting human myofascial system due to microgravity with a oninvasive, portable device on board the ISS. The MyotonPRO device applies several brief mechanical stimuli to the surface of the skin, and the natural oscillation signals of the tissue beneath are detected and computed by the MyotonPRO. Thus, an objective, quick and easy determination of the state of the underlying tissue is possible. Two preflight, four inflight and four post flight measurements were performed on a male astronaut using the same 10 measurement points (MP) for each session. MPs were located on the plantar fascia, Achilles tendon, M. soleus, M. gastrocnemius, M. multifidus, M. splenius capitis, M. deltoideus anterior, M. rectus femoris, infrapatellar tendon, M. tibialis anterior. Subcutaneous tissues thickness above the MPs was measured using ultrasound imaging. Magnetic resonance images (MRI) of lower limb muscles and functional tests were also performed pre- and postflight. Our first measurements on board the ISS confirmed increased tone and stiffness of the lumbar multifidus muscle, an important trunk stabilizer, dysfunction of which is known to be associated with back pain. Furthermore, reduced tone and stiffness of Achilles tendon and plantar fascia were observed inflight vs. preflight, confirming previous findings from terrestrial analog studies and parabolic flights. Unexpectedly, the deltoid showed negative inflight changes in tone and stiffness, and increased elasticity, suggesting a potential risk of muscle atrophy in longer spaceflight that should be addressed by adequate inflight countermeasure protocols. Most values from limb and back MPS showed deflected patterns (in either directions) from inflight shortly after the re-entry phase on the landing day and one week later. Most parameter values then normalized to baseline after 3 weeks likely due to 1G re-adaptation and possible outcome of the reconditioning protocol. No major changes in subcutaneous tissues thickness above the MPs were found inflight vs preflight, suggesting no bias (i.e., fluid shift, extreme tissue thickening or loss). Pre- and postflight MRI and functional tests showed negligible changes in calf muscle size, power and force, which is likely due to training effects from current inflight exercise protocols. The MYOTONES experiment is currently ongoing to collect data from further crew members. The potential impact of this research is to better understand the effects of microgravity and countermeasures over the time course of an ISS mission cycle. This will enable exercise countermeasures to be tailored}, language = {en} } @article{SchwarzGebhardtSchleseretal.2019, author = {Schwarz, Alexander and Gebhardt, Andreas and Schleser, Markus and Popoola, Patricia}, title = {New Welding Joint Geometries Manufactured by Powder Bed Fusion from 316L}, series = {Materials Performance and Characterization 8}, journal = {Materials Performance and Characterization 8}, number = {in press}, issn = {2379-1365}, doi = {10.1520/MPC20180096}, year = {2019}, language = {en} } @article{KarschuckFilipovBollellaetal.2019, author = {Karschuck, T. L. and Filipov, Y. and Bollella, P. and Sch{\"o}ning, Michael Josef and Katz, E.}, title = {Not-XOR (NXOR) logic gate based on an enzyme-catalyzed reaction}, series = {International Journal of Unconventional Computing}, volume = {14}, journal = {International Journal of Unconventional Computing}, number = {3-4}, publisher = {Old City Publishing}, address = {Philadelphia}, issn = {1548-7199}, pages = {235 -- 242}, year = {2019}, abstract = {Enzyme-catalyzed reactions have been designed to mimic various Boolean logic gates in the general framework of unconventional biomolecular computing. While some of the logic gates, particularly OR, AND, are easy to realize with biocatalytic reactions and have been reported in numerous publications, some other, like NXOR, are very challenging and have not been realized yet with enzyme reactions. The paper reports on a novel approach to mimicking the NXOR logic gate using the bell-shaped enzyme activity dependent on pH values. Shifting pH from the optimum value to the acidic or basic values by using acid or base inputs (meaning 1,0 and 0,1 inputs) inhibits the enzyme reaction, while keeping the optimum pH (assuming 0,0 and 1,1 input combinations) preserves a high enzyme activity. The challenging part of the present approach is the selection of an enzyme with a well-demonstrated bell-shape activity dependence on the pH value. While many enzymes can satisfy this condition, we selected pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase as this enzyme has the optimum pH center-located on the pH scale allowing the enzyme activity change by the acidic and basic pH shift from the optimum value corresponding to the highest activity. The present NXOR gate is added to the biomolecular "toolbox" as a new example of Boolean logic gates based on enzyme reactions.}, language = {en} } @inproceedings{MahdiRendonSchwageretal.2019, author = {Mahdi, Zahra and Rend{\´o}n, Carlos and Schwager, Christian and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Novel concept for indirect solar-heated methane reforming}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, publisher = {AIP Publishing}, address = {Melville, NY}, issn = {0094-243X}, doi = {10.1063/1.5117694}, pages = {180014-1 -- 180014-7}, year = {2019}, language = {en} } @article{FunkeBeckmannKeinzetal.2019, author = {Funke, Harald and Beckmann, Nils and Keinz, Jan and Abanteriba, Sylvester}, title = {Numerical and Experimental Evaluation of a Dual-Fuel Dry-Low-NOx Micromix Combustor for Industrial Gas Turbine Applications}, series = {Journal of Thermal Science and Engineering Applications}, volume = {11}, journal = {Journal of Thermal Science and Engineering Applications}, number = {1}, publisher = {ASME}, address = {New York}, issn = {19485085}, doi = {10.1115/1.4041495}, pages = {011015}, year = {2019}, language = {en} } @article{ValeroVitiGualtieri2019, author = {Valero, Daniel and Viti, Nicolo and Gualtieri, Carlo}, title = {Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment}, series = {Water}, volume = {11}, journal = {Water}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w11010036}, pages = {Art. Nr. 36}, year = {2019}, language = {en} } @article{VitiValeroGualtieri2019, author = {Viti, Nicolo and Valero, Daniel and Gualtieri, Carlo}, title = {Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook}, series = {Water}, volume = {11}, journal = {Water}, number = {1}, issn = {2073-4441}, doi = {10.3390/w11010028}, pages = {Art. Nr. 28}, year = {2019}, language = {en} } @inproceedings{StrieganStruthDickhoffetal.2019, author = {Striegan, Constantin J. D. and Struth, Benjamin and Dickhoff, Jens and Kusterer, Karsten and Funke, Harald and Bohn, Dieter}, title = {Numerical Simulations of the Micromix DLN Hydrogen Combustion Technology with LES and Comparison to Results of RANS and Experimental Data}, series = {Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan.}, booktitle = {Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan.}, isbn = {978-4-89111-010-9}, pages = {1 -- 9}, year = {2019}, language = {en} } @article{RossiHoltschoppenButenweg2019, author = {Rossi, Leonardo and Holtschoppen, Britta and Butenweg, Christoph}, title = {Official data on the economic consequences of the 2012 Emilia-Romagna earthquake: a first analysis of database SFINGE}, series = {Bulletin of Earthquake Engineering}, volume = {17}, journal = {Bulletin of Earthquake Engineering}, number = {9}, publisher = {Springer}, address = {Berlin}, doi = {10.1007\%2Fs10518-019-00655-8}, pages = {4855 -- 4884}, year = {2019}, language = {en} }