@article{HillenSchiebelZaengel1987, author = {Hillen, Walter and Schiebel, U. and Zaengel, T.}, title = {Imaging performance of a digital storage phosphor system}, series = {Medical Physics. 14 (1987), H. 5}, journal = {Medical Physics. 14 (1987), H. 5}, isbn = {0094-2405}, pages = {744 -- 751}, year = {1987}, language = {en} } @article{HillenRuppSchiebeletal.1989, author = {Hillen, Walter and Rupp, S. and Schiebel, U. and Zaengel, Thomas T.}, title = {Imaging performance of a selenium-based detector for high-resolution radiography}, series = {Medical Imaging III: Image Formation}, journal = {Medical Imaging III: Image Formation}, isbn = {0-8194-0125-0}, pages = {296}, year = {1989}, language = {en} } @article{FoersterSchmidtHaug1996, author = {F{\"o}rster, Arnold and Schmidt, T. and Haug, R. J.}, title = {Imaging the local density of states in a disordered semiconductor / T. Schmidt ; R. J. Haug ; V. I. Fal'ko ... A. F{\"o}rster ...}, series = {23rd International Conference on the Physics of Semiconductors : Berlin, Germany, July 21 - 26, 1996 / ed.: Matthias Scheffler ... - Vol. 3}, journal = {23rd International Conference on the Physics of Semiconductors : Berlin, Germany, July 21 - 26, 1996 / ed.: Matthias Scheffler ... - Vol. 3}, publisher = {World Scientific}, address = {Singapore [u.a.]}, isbn = {981-02-2947-X}, pages = {2251 -- ff.}, year = {1996}, language = {en} } @article{BiselliLuellauDreisbachetal.1992, author = {Biselli, Manfred and L{\"u}llau, E. and Dreisbach, C. and Grogg, A.}, title = {Immobilization of animal cells on chemically modified siran carrier / L{\"u}llau, E. ; Dreisbach, C. ; Grogg, A. ; Biselli, M. ; Wandrey, C.}, series = {Animal cell technology : developments, processes, and products ; ESACT, European Society for Animal Cell Technology, the 11th meeting / Ed. R. E. Spier}, journal = {Animal cell technology : developments, processes, and products ; ESACT, European Society for Animal Cell Technology, the 11th meeting / Ed. R. E. Spier}, publisher = {Butterworth-Heinemann}, address = {Oxford}, isbn = {0750604212}, pages = {469 -- 475}, year = {1992}, language = {en} } @article{MourzinaYoshinobuErmolenkoetal.2004, author = {Mourzina, I.G. and Yoshinobu, T. and Ermolenko, Y.E. and Vlasov, Y. G. and Sch{\"o}ning, Michael Josef and Iwasaki, H.}, title = {Immobilization of urease and cholinesterase on the surface of semiconductor transducer for the development of light-addressable potentiometric sensors}, series = {Technical digest of the 10th International Meeting on Chemical Sensors, July 11 - 14, 2004, Tsukuba, Japan / Japan Association of Chemical Sensors}, journal = {Technical digest of the 10th International Meeting on Chemical Sensors, July 11 - 14, 2004, Tsukuba, Japan / Japan Association of Chemical Sensors}, publisher = {Japan Association of Chemical Sensors}, address = {Fukuoka}, pages = {788 -- 789}, year = {2004}, language = {en} } @article{MourzinaYoshinobuErmolenkoetal.2004, author = {Mourzina, Ioulia G. and Yoshinobu, Tatsuo and Ermolenko, Yuri E. and Vlasov, Yuri G. and Sch{\"o}ning, Michael Josef and Iwasaki, H.}, title = {Immobilization of urease and cholinesterase on the surface of semiconductor transducer for the development of lightaddressable potentiometric sensors}, series = {Microchimica Acta. 144 (2004), H. 1-3}, journal = {Microchimica Acta. 144 (2004), H. 1-3}, isbn = {0026-3672}, pages = {41 -- 50}, year = {2004}, language = {en} } @article{BogoyavlenskiyBerezinOgnevaetal.1999, author = {Bogoyavlenskiy, Andrey P. and Berezin, Vladimir E. and Ogneva, A. V. and Tolmacheva, V. P. and Digel, Ilya and Khudyakova, S. S.}, title = {Immunostimulating activity of a saponin-containing extract of Saponaria officinalis}, series = {Voprosy virusologii}, volume = {44}, journal = {Voprosy virusologii}, number = {5}, issn = {0507-4088}, pages = {229 -- 232}, year = {1999}, language = {en} } @article{BoehnischBraunMarzoccaetal.2024, author = {B{\"o}hnisch, Nils and Braun, Carsten and Marzocca, Pierre and Muscarello, Vincenzo}, title = {Impact of aerodynamic interactions on aeroelastic stability of wing-propeller systems}, series = {Applied Sciences}, volume = {14}, journal = {Applied Sciences}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app14198709}, year = {2024}, abstract = {This paper presents initial findings from aeroelastic studies conducted on a wing-propeller model, aimed at evaluating the impact of aerodynamic interactions on wing flutter mechanisms and overall aeroelastic performance. The flutter onset is assessed using a frequency-domain method. Mid-fidelity tools based on the time-domain approach are then exploited to account for the complex aerodynamic interaction between the propeller and the wing. Specifically, the open-source software DUST and MBDyn are leveraged for this purpose. The investigation covers both windmilling and thrusting conditions. During the trim process, adjustments to the collective pitch of the blades are made to ensure consistency across operational points. Time histories are then analyzed to pinpoint flutter onset, and corresponding frequencies and damping ratios are identified. The results reveal a marginal destabilizing effect of aerodynamic interaction on flutter speed, approximately 5\%. Notably, the thrusting condition demonstrates a greater destabilizing influence compared to the windmilling case. These comprehensive findings enhance the understanding of the aerodynamic behavior of such systems and offer valuable insights for early design predictions and the development of streamlined models for future endeavors.}, language = {en} } @article{FingerBraunBil2020, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Impact of Battery Performance on the Initial Sizing of Hybrid-Electric General Aviation Aircraft}, series = {Journal of Aerospace Engineering}, volume = {33}, journal = {Journal of Aerospace Engineering}, number = {3}, publisher = {ASCE}, address = {Reston, Va.}, issn = {1943-5525}, doi = {10.1061/(ASCE)AS.1943-5525.0001113}, year = {2020}, abstract = {Studies suggest that hybrid-electric aircraft have the potential to generate fewer emissions and be inherently quieter when compared to conventional aircraft. By operating combustion engines together with an electric propulsion system, synergistic benefits can be obtained. However, the performance of hybrid-electric aircraft is still constrained by a battery's energy density and discharge rate. In this paper, the influence of battery performance on the gross mass for a four-seat general aviation aircraft with a hybrid-electric propulsion system is analyzed. For this design study, a high-level approach is chosen, using an innovative initial sizing methodology to determine the minimum required aircraft mass for a specific set of requirements and constraints. Only the peak-load shaving operational strategy is analyzed. Both parallel- and serial-hybrid propulsion configurations are considered for two different missions. The specific energy of the battery pack is varied from 200 to 1,000 W⋅h/kg, while the discharge time, and thus the normalized discharge rating (C-rating), is varied between 30 min (2C discharge rate) and 2 min (30C discharge rate). With the peak-load shaving operating strategy, it is desirable for hybrid-electric aircraft to use a light, low capacity battery system to boost performance. For this case, the battery's specific power rating proved to be of much higher importance than for full electric designs, which have high capacity batteries. Discharge ratings of 20C allow a significant take-off mass reduction aircraft. The design point moves to higher wing loadings and higher levels of hybridization if batteries with advanced technology are used.}, language = {en} } @article{FingerBraunBil2018, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Impact of electric propulsion technology and mission requirements on the performance of VTOL UAVs}, series = {CEAS Aeronautical Journal}, volume = {10}, journal = {CEAS Aeronautical Journal}, number = {3}, publisher = {Springer}, issn = {1869-5582 print}, doi = {10.1007/s13272-018-0352-x}, pages = {843}, year = {2018}, abstract = {One of the engineering challenges in aviation is the design of transitioning vertical take-off and landing (VTOL) aircraft. Thrust-borne flight implies a higher mass fraction of the propulsion system, as well as much increased energy consumption in the take-off and landing phases. This mass increase is typically higher for aircraft with a separate lift propulsion system than for aircraft that use the cruise propulsion system to support a dedicated lift system. However, for a cost-benefit trade study, it is necessary to quantify the impact the VTOL requirement and propulsion configuration has on aircraft mass and size. For this reason, sizing studies are conducted. This paper explores the impact of considering a supplemental electric propulsion system for achieving hovering flight. Key variables in this study, apart from the lift system configuration, are the rotor disk loading and hover flight time, as well as the electrical systems technology level for both batteries and motors. Payload and endurance are typically used as the measures of merit for unmanned aircraft that carry electro-optical sensors, and therefore the analysis focuses on these particular parameters.}, language = {en} }