@article{SchmitzOligschlaegerEifleretal.1994, author = {Schmitz, G{\"u}nter and Oligschl{\"a}ger, U. and Eifler, G. and Lechner, H.}, title = {Automated System for Optimized Calibration of Engine Management Systems}, year = {1994}, language = {en} } @article{MarxSchenkBehrensetal.2013, author = {Marx, Ulrich and Schenk, Friedrich and Behrens, Jan and Meyr, Ulrike and Wanek, Paul and Zang, Werner and Schmitt, Robert and Br{\"u}stle, Oliver and Zenke, Martin and Klocke, Fritz}, title = {Automatic production of induced pluripotent stem cells}, series = {Procedia CIRP : First CIRP Conference on BioManufacturing}, volume = {Vol. 5}, journal = {Procedia CIRP : First CIRP Conference on BioManufacturing}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, pages = {2 -- 6}, year = {2013}, language = {en} } @article{EnningBernhardRake1994, author = {Enning, Manfred and Bernhard, S. and Rake, H.}, title = {Automation of a laboratory plant for direct casting of thin steel strips / Bernhard, S. ; Enning, M. ; Rake, H.}, series = {Control Engineering Practice. 2 (1994), H. 6}, journal = {Control Engineering Practice. 2 (1994), H. 6}, isbn = {0967-0661}, pages = {961 -- 967}, year = {1994}, language = {en} } @article{BiselliVanderPolDeGooijeretal.1996, author = {Biselli, Manfred and Van der Pol, Jens J. and De Gooijer, Cornelis D. and Wandrey, Christian}, title = {Automation of selective assays for on-line bioprocess monitoring by flow-injection analysis / van der Pol, Jens J. ; de Gooijer, Cornelis D. ; Biselli, Manfred ; Wandrey, Christian ; Tramper, Johannes}, series = {Trends in Biotechnology. 14 (1996), H. 12}, journal = {Trends in Biotechnology. 14 (1996), H. 12}, isbn = {0167-7799}, pages = {471 -- 477}, year = {1996}, language = {en} } @article{LaarmannThomaMischetal.2023, author = {Laarmann, Lukas and Thoma, Andreas and Misch, Philipp and R{\"o}th, Thilo and Braun, Carsten and Watkins, Simon and Fard, Mohammad}, title = {Automotive safety approach for future eVTOL vehicles}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer Nature}, issn = {1869-5590 (Online)}, doi = {10.1007/s13272-023-00655-0}, pages = {11 Seiten}, year = {2023}, abstract = {The eVTOL industry is a rapidly growing mass market expected to start in 2024. eVTOL compete, caused by their predicted missions, with ground-based transportation modes, including mainly passenger cars. Therefore, the automotive and classical aircraft design process is reviewed and compared to highlight advantages for eVTOL development. A special focus is on ergonomic comfort and safety. The need for further investigation of eVTOL's crashworthiness is outlined by, first, specifying the relevance of passive safety via accident statistics and customer perception analysis; second, comparing the current state of regulation and certification; and third, discussing the advantages of integral safety and applying the automotive safety approach for eVTOL development. Integral safety links active and passive safety, while the automotive safety approach means implementing standardized mandatory full-vehicle crash tests for future eVTOL. Subsequently, possible crash impact conditions are analyzed, and three full-vehicle crash load cases are presented.}, language = {en} } @article{EnningMannBolligetal.2003, author = {Enning, Manfred and Mann, S. and Bollig, A. and Kaierle, S.}, title = {Autonomous Production Cell for Laser Beam Welding / Mann S. ; Bollig, A. ; Kaierle, S. ; Abel, D. ; Poprawe, R.}, publisher = {LIA}, address = {Orlando, Fla}, isbn = {0912035757}, year = {2003}, language = {en} } @article{Benkner1995, author = {Benkner, Thorsten}, title = {Autonomous Slot Assignment Schemes for PRMA++ Third Generation TDMA Systems}, series = {Proceedings / Organization: IEEE Vehicular Technology/Communications Society; Joint Chapter in the Benelux Section and Telecommunications Division, Eindhoven University of Technology, The Netherlands. Ed.: Peter Smulders}, journal = {Proceedings / Organization: IEEE Vehicular Technology/Communications Society; Joint Chapter in the Benelux Section and Telecommunications Division, Eindhoven University of Technology, The Netherlands. Ed.: Peter Smulders}, publisher = {Techn. Univ. Eindhoven, Telecommunications Div.}, address = {Eindhoven}, isbn = {9061449928}, pages = {209 S.}, year = {1995}, language = {en} } @article{HandtkeSchroeterJuergenetal.2014, author = {Handtke, Stefan and Schroeter, Rebecca and J{\"u}rgen, Britta and Methling, Karen and Schl{\"u}ter, Rabea and Albrecht, Dirk and Hijum, Sacha A. F. T. van and Bongaerts, Johannes and Maurer, Karl-Heinz and Lalk, Michael and Schweder, Thomas and Hecker, Michael and Voigt, Birgit}, title = {Bacillus pumilus reveals a remarkably high resistance to hydrogen peroxide provoked oxidative stress}, series = {PLOS one}, volume = {9}, journal = {PLOS one}, number = {1}, publisher = {PLOS}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0085625}, pages = {e85625}, year = {2014}, abstract = {Bacillus pumilus is characterized by a higher oxidative stress resistance than other comparable industrially relevant Bacilli such as B. subtilis or B. licheniformis. In this study the response of B. pumilus to oxidative stress was investigated during a treatment with high concentrations of hydrogen peroxide at the proteome, transcriptome and metabolome level. Genes/proteins belonging to regulons, which are known to have important functions in the oxidative stress response of other organisms, were found to be upregulated, such as the Fur, Spx, SOS or CtsR regulon. Strikingly, parts of the fundamental PerR regulon responding to peroxide stress in B. subtilis are not encoded in the B. pumilus genome. Thus, B. pumilus misses the catalase KatA, the DNA-protection protein MrgA or the alkyl hydroperoxide reductase AhpCF. Data of this study suggests that the catalase KatX2 takes over the function of the missing KatA in the oxidative stress response of B. pumilus. The genome-wide expression analysis revealed an induction of bacillithiol (Cys-GlcN-malate, BSH) relevant genes. An analysis of the intracellular metabolites detected high intracellular levels of this protective metabolite, which indicates the importance of bacillithiol in the peroxide stress resistance of B. pumilus.}, language = {en} } @article{ChristenBarteltKowalski2010, author = {Christen, Marc and Bartelt, Perry and Kowalski, Julia}, title = {Back calculation of the In den Arelen avalanche with RAMMS: Interpretation of model results}, series = {Annals of Glaciology}, volume = {51}, journal = {Annals of Glaciology}, number = {54}, publisher = {Cambridge University Press}, address = {Cambridge}, isbn = {1727-5644}, doi = {10.3189/172756410791386553}, pages = {161 -- 168}, year = {2010}, abstract = {Two- and three-dimensional avalanche dynamics models are being increasingly used in hazard-mitigation studies. These models can provide improved and more accurate results for hazard mapping than the simple one-dimensional models presently used in practice. However, two- and three-dimensional models generate an extensive amount of output data, making the interpretation of simulation results more difficult. To perform a simulation in three-dimensional terrain, numerical models require a digital elevation model, specification of avalanche release areas (spatial extent and volume), selection of solution methods, finding an adequate calculation resolution and, finally, the choice of friction parameters. In this paper, the importance and difficulty of correctly setting up and analysing the results of a numerical avalanche dynamics simulation is discussed. We apply the two-dimensional simulation program RAMMS to the 1968 extreme avalanche event In den Arelen. We show the effect of model input variations on simulation results and the dangers and complexities in their interpretation.}, language = {en} } @article{PogorelovaRogachevDigeletal.2020, author = {Pogorelova, Natalia and Rogachev, Evgeniy and Digel, Ilya and Chernigova, Svetlana and Nardin, Dmitry}, title = {Bacterial Cellulose Nanocomposites: Morphology and Mechanical Properties}, series = {Materials}, volume = {13}, journal = {Materials}, number = {12}, publisher = {MDPI}, address = {Basel}, isbn = {1996-1944}, doi = {10.3390/ma13122849}, pages = {1 -- 16}, year = {2020}, abstract = {Bacterial cellulose (BC) is a promising material for biomedical applications due to its unique properties such as high mechanical strength and biocompatibility. This article describes the microbiological synthesis, modification, and characterization of the obtained BC-nanocomposites originating from symbiotic consortium Medusomyces gisevii. Two BC-modifications have been obtained: BC-Ag and BC-calcium phosphate (BC-Ca3(PO4)2). Structure and physicochemical properties of the BC and its modifications were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and infrared Fourier spectroscopy as well as by measurements of mechanical and water holding/absorbing capacities. Topographic analysis of the surface revealed multicomponent thick fibrils (150-160 nm in diameter and about 15 µm in length) constituted by 50-60 nm nanofibrils weaved into a left-hand helix. Distinctive features of Ca-phosphate-modified BC samples were (a) the presence of 500-700 nm entanglements and (b) inclusions of Ca3(PO4)2 crystals. The samples impregnated with Ag nanoparticles exhibited numerous roundish inclusions, about 110 nm in diameter. The boundaries between the organic and inorganic phases were very distinct in both cases. The Ag-modified samples also showed a prominent waving pattern in the packing of nanofibrils. The obtained BC gel films possessed water-holding capacity of about 62.35 g/g. However, the dried (to a constant mass) BC-films later exhibited a low water absorption capacity (3.82 g/g). It was found that decellularized BC samples had 2.4 times larger Young's modulus and 2.2 times greater tensile strength as compared to dehydrated native BC films. We presume that this was caused by molecular compaction of the BC structure.}, language = {en} }