@article{GasparyanPoghossianVitusevichetal.2011, author = {Gasparyan, Ferdinand V. and Poghossian, Arshak and Vitusevich, Svetlana A. and Petrychuk, Mykhaylo V. and Sydoruk, Viktor A. and Siqueira, Jos{\´e} R. Jr. and Oliveira, Osvaldo N. Jr. and Offenh{\"a}usser, Andreas and Sch{\"o}ning, Michael Josef}, title = {Low-Frequency Noise in Field-Effect Devices Functionalized With Dendrimer/Carbon-Nanotube Multilayers}, series = {IEEE Sensors Journal. 11 (2011), H. 1}, journal = {IEEE Sensors Journal. 11 (2011), H. 1}, publisher = {IEEE}, address = {New York}, isbn = {1530-437X}, pages = {142 -- 149}, year = {2011}, language = {en} } @article{RabehiGarlanAchtsnichtetal.2018, author = {Rabehi, Amine and Garlan, Benjamin and Achtsnicht, Stefan and Krause, Hans-Joachim and Offenh{\"a}usser, Andreas and Ngo, Kieu and Neveu, Sophie and Graff-Dubois, Stephanie and Kokabi, Hamid}, title = {Magnetic detection structure for Lab-on-Chip applications based on the frequency mixing technique}, series = {Sensors}, volume = {18}, journal = {Sensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s18061747}, pages = {14 Seiten}, year = {2018}, abstract = {A magnetic frequency mixing technique with a set of miniaturized planar coils was investigated for use with a completely integrated Lab-on-Chip (LoC) pathogen sensing system. The system allows the detection and quantification of superparamagnetic beads. Additionally, in terms of magnetic nanoparticle characterization ability, the system can be used for immunoassays using the beads as markers. Analytical calculations and simulations for both excitation and pick-up coils are presented; the goal was to investigate the miniaturization of simple and cost-effective planar spiral coils. Following these calculations, a Printed Circuit Board (PCB) prototype was designed, manufactured, and tested for limit of detection, linear response, and validation of theoretical concepts. Using the magnetic frequency mixing technique, a limit of detection of 15 µg/mL of 20 nm core-sized nanoparticles was achieved without any shielding.}, language = {en} } @article{AchtsnichtSchoenenbornOffenhaeusseretal.2019, author = {Achtsnicht, Stefan and Sch{\"o}nenborn, Kristina and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Measurement of the magnetophoretic velocity of different superparamagnetic beads}, series = {Journal of Magnetism and Magnetic Materials}, volume = {477}, journal = {Journal of Magnetism and Magnetic Materials}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2018.10.066}, pages = {244 -- 248}, year = {2019}, abstract = {The movement of magnetic beads due to a magnetic field gradient is of great interest in different application fields. In this report we present a technique based on a magnetic tweezers setup to measure the velocity factor of magnetically actuated individual superparamagnetic beads in a fluidic environment. Several beads can be tracked simultaneously in order to gain and improve statistics. Furthermore we show our results for different beads with hydrodynamic diameters between 200 and 1000 nm from diverse manufacturers. These measurement data can, for example, be used to determine design parameters for a magnetic separation system, like maximum flow rate and minimum separation time, or to select suitable beads for fixed experimental requirements.}, language = {en} } @article{SchoeningPoghossianSchultze2003, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak and Schultze, Joachim W.}, title = {Measuring seven parameters by two ISFET modules in a microcell set-up}, series = {Int. Journal of Computational Engineering Science. 4 (2003), H. 2}, journal = {Int. Journal of Computational Engineering Science. 4 (2003), H. 2}, isbn = {1465-8763}, pages = {257 -- 260}, year = {2003}, language = {en} } @article{KraemerBongaertsBovenbergetal.2003, author = {Kr{\"a}mer, Marco and Bongaerts, Johannes and Bovenberg, Roel and Kremer, Susanne and M{\"u}ller, Ulrike and Orf, Sonja and Wubbolts, Marcel and Raeven, Leon}, title = {Metabolic engineering for microbial production of shikimic acid}, series = {Metabolic engineering}, volume = {Vol. 5}, journal = {Metabolic engineering}, number = {Iss. 4}, issn = {1096-7184 (E-Journal); 1096-7176 (Print)}, pages = {277 -- 283}, year = {2003}, language = {en} } @article{HuckSchiffelsHerreraetal.2013, author = {Huck, Christina and Schiffels, Johannes and Herrera, Cony N. and Schelden, Maximilian and Selmer, Thorsten and Poghossian, Arshak and Baumann, Marcus and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Metabolic responses of Escherichia coli upon glucose pulses captured by a capacitive field-effect sensor}, series = {Physica Status Solidi (A)}, volume = {210}, journal = {Physica Status Solidi (A)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0031-8965}, doi = {10.1002/pssa.201200900}, pages = {926 -- 931}, year = {2013}, abstract = {Living cells are complex biological systems transforming metabolites taken up from the surrounding medium. Monitoring the responses of such cells to certain substrate concentrations is a challenging task and offers possibilities to gain insight into the vitality of a community influenced by the growth environment. Cell-based sensors represent a promising platform for monitoring the metabolic activity and thus, the "welfare" of relevant organisms. In the present study, metabolic responses of the model bacterium Escherichia coli in suspension, layered onto a capacitive field-effect structure, were examined to pulses of glucose in the concentration range between 0.05 and 2 mM. It was found that acidification of the surrounding medium takes place immediately after glucose addition and follows Michaelis-Menten kinetic behavior as a function of the glucose concentration. In future, the presented setup can, therefore, be used to study substrate specificities on the enzymatic level and may as well be used to perform investigations of more complex metabolic responses. Conclusions and perspectives highlighting this system are discussed.}, language = {en} } @article{WilmingBegemannKuhneetal.2013, author = {Wilming, Anja and Begemann, Jens and Kuhne, Stefan and Regestein, Lars and Bongaerts, Johannes and Evers, Stefan and Maurer, Karl-Heinz and B{\"u}chs, Jochen}, title = {Metabolic studies of γ-polyglutamic acid production in Bacillus licheniformis by small-scale continuous cultivations}, series = {Biochemical engineering journal}, volume = {Vol. 73}, journal = {Biochemical engineering journal}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-295X (E-Journal); 1369-703X (Print)}, pages = {29 -- 37}, year = {2013}, language = {en} } @article{SchmidtTonnesmannFoersteretal.2000, author = {Schmidt, R. and Tonnesmann, A. and F{\"o}rster, Arnold and Grimm, M. and Kordos, P. and L{\"u}th, H.}, title = {Metamorphic InAlAs/InGaAs HEMT's on GaAs substrates using an InP buffer layer}, series = {8th IEEE International Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications : EDMO 2000 ; [13 - 14 November 2000, University of Glasgow] / organised by Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow Scotland. MTT/ED/AP/LEO Societies Joint Chapter, United Kingdom and Republic of Ireland Section. With technical co-sponsorship from IEEE Electron Device Society}, journal = {8th IEEE International Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications : EDMO 2000 ; [13 - 14 November 2000, University of Glasgow] / organised by Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow Scotland. MTT/ED/AP/LEO Societies Joint Chapter, United Kingdom and Republic of Ireland Section. With technical co-sponsorship from IEEE Electron Device Society}, publisher = {IEEE Operations Center}, address = {Piscataway, NJ}, isbn = {0-7803-6550-X}, pages = {95 -- 98}, year = {2000}, language = {en} } @article{KurowskiSchultzeLuethetal.2001, author = {Kurowski, A. and Schultze, J.W. and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {Micro- and nanopatterning of sensor chips by means of macroporous silicon}, series = {Transducers '01 Eurosensors XV : digest of technical papers / the 11th International Conference on Solid-State Sensors and Actuators, June 10-14, 2001, Munich, Germany. Ernst Obermeier (Ed.)}, journal = {Transducers '01 Eurosensors XV : digest of technical papers / the 11th International Conference on Solid-State Sensors and Actuators, June 10-14, 2001, Munich, Germany. Ernst Obermeier (Ed.)}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {3-540-42150-5}, pages = {640 -- 643}, year = {2001}, language = {en} } @article{KurowskiSchultzeLuethetal.2002, author = {Kurowski, A. and Schultze, J. and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {Micro- and nanopatterning of sensor chips by means of macroporous silicon.}, series = {Sensors and Actuators B. 83 (2002), H. 1-3}, journal = {Sensors and Actuators B. 83 (2002), H. 1-3}, isbn = {0925-4005}, pages = {123 -- 128}, year = {2002}, language = {en} }