@article{HeuermannSadeghfam2008, author = {Heuermann, Holger and Sadeghfam, Arash}, title = {Electrically tunable bandpass filter with integrated carrier suppression for UHF RFID systems / Sadeghfam, Arash ; Heuermann, Holger}, series = {European Microwave Conference, 2008, EuMC 2008, 38th}, journal = {European Microwave Conference, 2008, EuMC 2008, 38th}, isbn = {978-2-87487-006-4}, pages = {1727 -- 1730}, year = {2008}, language = {en} } @article{HeuermannSadeghfam2008, author = {Heuermann, Holger and Sadeghfam, Arash}, title = {Electrically tunable bandpass filter with integrated carrier suppression for UHF RFID systems / Sadeghfam, Arash ; Heuermann, Holger}, series = {European Conference on Wireless Technology, 2008. EuWiT 2008.}, journal = {European Conference on Wireless Technology, 2008. EuWiT 2008.}, isbn = {978-2-87487-008-8}, pages = {306 -- 309}, year = {2008}, language = {en} } @incollection{NiendorfWinterFrauenrath2012, author = {Niendorf, Thoralf and Winter, Lukas and Frauenrath, Tobias}, title = {Electrocardiogram in an MRI environment: Clinical needs, practical considerations, safety implications, technical solutions and fFuture directions}, series = {Advances in Electrocardiograms - Methods and Analysis}, booktitle = {Advances in Electrocardiograms - Methods and Analysis}, editor = {Millis, Richard}, publisher = {IntechOpen}, address = {London}, isbn = {978-953-307-923-3 (print)}, doi = {10.5772/24340}, pages = {309 -- 324}, year = {2012}, language = {en} } @article{WindmuellerSchapsZantisetal.2024, author = {Windm{\"u}ller, Anna and Schaps, Kristian and Zantis, Frederik and Domgans, Anna and Taklu, Bereket Woldegbreal and Yang, Tingting and Tsai, Chih-Long and Schierholz, Roland and Yu, Shicheng and Kungl, Hans and Tempel, Hermann and Dunin-Borkowski, Rafal E. and H{\"u}ning, Felix and Hwang, Bing Joe and Eichel, R{\"u}diger-A.}, title = {Electrochemical activation of LiGaO2: implications for ga-doped garnet solid electrolytes in li-metal batteries}, series = {ACS Applied Materials \& Interfaces}, volume = {16}, journal = {ACS Applied Materials \& Interfaces}, number = {30}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {39181-3919}, doi = {10.1021/acsami.4c03729}, pages = {14 Seiten}, year = {2024}, abstract = {Ga-doped Li7La3Zr2O12 garnet solid electrolytes exhibit the highest Li-ion conductivities among the oxide-type garnet-structured solid electrolytes, but instabilities toward Li metal hamper their practical application. The instabilities have been assigned to direct chemical reactions between LiGaO2 coexisting phases and Li metal by several groups previously. Yet, the understanding of the role of LiGaO2 in the electrochemical cell and its electrochemical properties is still lacking. Here, we are investigating the electrochemical properties of LiGaO2 through electrochemical tests in galvanostatic cells versus Li metal and complementary ex situ studies via confocal Raman microscopy, quantitative phase analysis based on powder X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron energy loss spectroscopy. The results demonstrate considerable and surprising electrochemical activity, with high reversibility. A three-stage reaction mechanism is derived, including reversible electrochemical reactions that lead to the formation of highly electronically conducting products. The results have considerable implications for the use of Ga-doped Li7La3Zr2O12 electrolytes in all-solid-state Li-metal battery applications and raise the need for advanced materials engineering to realize Ga-doped Li7La3Zr2O12for practical use.}, language = {en} } @incollection{SchoeningPoghossianGluecketal.2014, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak and Gl{\"u}ck, Olaf and Thust, Marion}, title = {Electrochemical composition measurement}, series = {Measurement, instrumentation, and sensors handbook: electromagnetic, optical, radiation, chemical, and biomedical measuremen}, booktitle = {Measurement, instrumentation, and sensors handbook: electromagnetic, optical, radiation, chemical, and biomedical measuremen}, edition = {2nd ed.}, publisher = {CRC Pr.}, address = {Boca Raton, Fa.}, isbn = {978-1-4398-4891-3}, pages = {55-1 -- 55-54}, year = {2014}, language = {en} } @article{WeldenSchejaSchoeningetal.2018, author = {Welden, Rene and Scheja, Sabrina and Sch{\"o}ning, Michael Josef and Wagner, Patrick and Wagner, Torsten}, title = {Electrochemical Evaluation of Light-Addressable Electrodes Based on TiO2 for the Integration in Lab-on-Chip Systems}, series = {physica status solidi a : applications and materials sciences}, volume = {215}, journal = {physica status solidi a : applications and materials sciences}, number = {15}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201800150}, pages = {Article number 1800150}, year = {2018}, abstract = {In lab-on-chip systems, electrodes are important for the manipulation (e.g., cell stimulation, electrolysis) within such systems. An alternative to commonly used electrode structures can be a light-addressable electrode. Here, due to the photoelectric effect, the conducting area can be adjusted by modification of the illumination area which enables a flexible control of the electrode. In this work, titanium dioxide based light-addressable electrodes are fabricated by a sol-gel technique and a spin-coating process, to deposit a thin film on a fluorine-doped tin oxide glass. To characterize the fabricated electrodes, the thickness, and morphological structure are measured by a profilometer and a scanning electron microscope. For the electrochemical behavior, the dark current and the photocurrent are determined for various film thicknesses. For the spatial resolution behavior, the dependency of the photocurrent while changing the area of the illuminated area is studied. Furthermore, the addressing of single fluid compartments in a three-chamber system, which is added to the electrode, is demonstrated.}, language = {en} } @article{SchoeningGlueckThust1999, author = {Sch{\"o}ning, Michael Josef and Gl{\"u}ck, O. and Thust, M.}, title = {Electrochemical methods for the determination of chemical variables in aqueous media}, series = {The measurement, instrumentation, and sensors handbook / ed.-in-chief John G. Webster. In cooperation with IEEE Press}, journal = {The measurement, instrumentation, and sensors handbook / ed.-in-chief John G. Webster. In cooperation with IEEE Press}, publisher = {CRC Press}, address = {Boca Raton [u.a.]}, isbn = {0-8493-8347-1}, pages = {1 -- 49}, year = {1999}, language = {en} } @incollection{SchoeningPoghossianGluecketal.2014, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak and Gl{\"u}ck, Olaf and Thust, Marion}, title = {Electrochemical methods for the determination of chemical variables in aqueous media}, series = {Measurement, instrumentation, and sensors handbook / ed. by John G. Webster [u.a.] Vol. 2 : Electromagnetic, optical, radiation, chemical, and biomedical measurement}, booktitle = {Measurement, instrumentation, and sensors handbook / ed. by John G. Webster [u.a.] Vol. 2 : Electromagnetic, optical, radiation, chemical, and biomedical measurement}, publisher = {CRC Pr.}, address = {Boca Raton, Fla.}, isbn = {978-1-4398-4891-3}, pages = {55-1 -- 55-54}, year = {2014}, language = {en} } @article{BaeckerDellePoghossianetal.2011, author = {B{\"a}cker, Matthias and Delle, L. and Poghossian, Arshak and Biselli, Manfred and Zang, Werner and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Electrochemical sensor array for bioprocess monitoring}, series = {Electrochimica Acta (2011)}, volume = {56}, journal = {Electrochimica Acta (2011)}, number = {26}, publisher = {Elsevier}, address = {Amsterdam}, pages = {9673 -- 9678}, year = {2011}, language = {en} } @article{HonarvarfardGamellaChannaveerappaetal.2017, author = {Honarvarfard, Elham and Gamella, Maria and Channaveerappa, Devika and Darie, Costel C. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {Electrochemically Stimulated Insulin Release from a Modified Graphene-functionalized Carbon Fiber Electrode}, series = {Electroanalysis}, volume = {29}, journal = {Electroanalysis}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.201700095}, pages = {1543 -- 1553}, year = {2017}, abstract = {A graphene-functionalized carbon fiber electrode was modified with adsorbed polyethylenimine to introduce amino functionalities and then with trigonelline and 4-carboxyphenylboronic acid covalently bound to the amino groups. The trigonelline species containing quarterized pyridine groups produced positive charge on the electrode surface regardless of the pH value, while the phenylboronic acid species were neutral below pH 8 and negatively charged above pH 9 (note that their pKa=8.4). The total charge on the monolayer-modified electrode was positive at the neutral pH and negative at pH > 9. Note that 4-carboxyphenylboronic acid was attached to the electrode surface in molar excess to trigonelline, thus allowing the negative charge to dominate on the electrode surface at basic pH. Negatively charged fluorescent dye-labeled insulin (insulin-FITC) was loaded on the modified electrode surface at pH 7.0 due to its electrostatic attraction to the positively charged interface. The local pH in close vicinity to the electrode surface was increased to ca. 9-10 due to consumption of H+ ions upon electrochemical reduction of oxygen proceeding at the potential of -1.0 V (vs. Ag/AgCl) applied on the modified electrode. The process resulted in recharging of the electrode surface to the negative value due to the formation of the negative charge on the phenylboronic acid groups, thus resulting in the electrostatic repulsion of insulin-FITC and stimulating its release from the electrode surface. The insulin release was characterized by fluorescence spectroscopy (using the FITC-labeled insulin), by electrochemical measurements on an iridium oxide, IrOx, electrode and by mass spectrometry. The graphene-functionalized carbon fiber electrode demonstrated significant advantages in the signal-stimulated insulin release comparing with the carbon fiber electrode without the graphene species.}, language = {en} }