@article{JildehKirchnerOberlaenderetal.2017, author = {Jildeh, Zaid B. and Kirchner, Patrick and Oberl{\"a}nder, Jan and Kremers, Alexander and Wagner, Torsten and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {FEM-based modeling of a calorimetric gas sensor for hydrogen peroxide monitoring}, series = {physica status solidi a : applications and materials sciences}, journal = {physica status solidi a : applications and materials sciences}, number = {Early View}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201600912}, year = {2017}, abstract = {A physically coupled finite element method (FEM) model is developed to study the response behavior of a calorimetric gas sensor. The modeled sensor serves as a monitoring device of the concentration of gaseous hydrogen peroxide (H2 O2) in a high temperature mixture stream in aseptic sterilization processes. The principle of operation of a calorimetric H2 O2 sensor is analyzed and the results of the numerical model have been validated by using previously published sensor experiments. The deviation in the results between the FEM model and experimental data are presented and discussed.}, language = {en} } @article{PhamStaat2014, author = {Pham, Phu Tinh and Staat, Manfred}, title = {FEM-based shakedown analysis of hardening structures}, series = {Asia Pacific journal on computational engineering}, journal = {Asia Pacific journal on computational engineering}, number = {1}, publisher = {SpringerOpen}, address = {Berlin}, issn = {2196-1166 (E-Journal)}, doi = {10.1186/2196-1166-1-4}, pages = {Article No. 4}, year = {2014}, abstract = {This paper develops a new finite element method (FEM)-based upper bound algorithm for limit and shakedown analysis of hardening structures by a direct plasticity method. The hardening model is a simple two-surface model of plasticity with a fixed bounding surface. The initial yield surface can translate inside the bounding surface, and it is bounded by one of the two equivalent conditions: (1) it always stays inside the bounding surface or (2) its centre cannot move outside the back-stress surface. The algorithm gives an effective tool to analyze the problems with a very high number of degree of freedom. Our numerical results are very close to the analytical solutions and numerical solutions in literature.}, language = {en} } @article{StaatHeitzer1999, author = {Staat, Manfred and Heitzer, M.}, title = {FEM-computation of load carrying capacity of highly loaded passive components by direct methods. Heitzer, M. ; Staat, M.}, series = {Nuclear Engineering and Design. 193 (1999), H. 3}, journal = {Nuclear Engineering and Design. 193 (1999), H. 3}, isbn = {0029-5493}, pages = {349 -- 358}, year = {1999}, language = {en} } @inproceedings{BhattaraiStaat2016, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Female pelvic floor dysfunction: progress weakening of the support system}, series = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, booktitle = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, editor = {Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, doi = {10.17185/duepublico/40821}, pages = {11 -- 12}, year = {2016}, abstract = {The structure of the female pelvic floor (PF) is an inter-related system of bony pelvis,muscles, pelvic organs, fascias, ligaments, and nerves with multiple functions. Mechanically, thepelvic organ support system are of two types: (I) supporting system of the levator ani (LA) muscle,and (II) the suspension system of the endopelvic fascia condensation [1], [2]. Significantdenervation injury to the pelvic musculature, depolimerization of the collagen fibrils of the softvaginal hammock, cervical ring and ligaments during pregnancy and vaginal delivery weakens thenormal functions of the pelvic floor. Pelvic organ prolapse, incontinence, sexual dysfunction aresome of the dysfunctions which increases progressively with age and menopause due toweakened support system according to the Integral theory [3]. An improved 3D finite elementmodel of the female pelvic floor as shown in Fig. 1 is constructed that: (I) considers the realisticsupport of the organs to the pelvic side walls, (II) employs the improvement of our previous FEmodel [4], [5] along with the patient based geometries, (III) incorporates the realistic anatomy andboundary conditions of the endopelvic (pubocervical and rectovaginal) fascia, and (IV) considersvarying stiffness of the endopelvic fascia in the craniocaudal direction [3]. Several computationsare carried out on the presented computational model with healthy and damaged supportingtissues, and comparisons are made to understand the physiopathology of the female PF disorders.}, language = {en} } @article{WiegandVoigtAlbrechtetal.2013, author = {Wiegand, Sandra and Voigt, Birgit and Albrecht, Dirk and Bongaerts, Johannes and Evers, Stefan and Hecker, Michael and Daniel, Rolf and Liesegang, Heiko}, title = {Fermentation stage-dependent adaptations of Bacillus licheniformis during enzyme production}, series = {Microbial Cell Factories}, volume = {12}, journal = {Microbial Cell Factories}, publisher = {Biomed Central}, address = {London}, issn = {1475-2859}, doi = {10.1186/1475-2859-12-120}, pages = {120}, year = {2013}, language = {en} } @inproceedings{BornheimGriegerBialonski2021, author = {Bornheim, Tobias and Grieger, Niklas and Bialonski, Stephan}, title = {FHAC at GermEval 2021: Identifying German toxic, engaging, and fact-claiming comments with ensemble learning}, series = {Proceedings of the GermEval 2021 Workshop on the Identification of Toxic, Engaging, and Fact-Claiming Comments : 17th Conference on Natural Language Processing KONVENS 2021}, booktitle = {Proceedings of the GermEval 2021 Workshop on the Identification of Toxic, Engaging, and Fact-Claiming Comments : 17th Conference on Natural Language Processing KONVENS 2021}, publisher = {Heinrich Heine University}, address = {D{\"u}sseldorf}, doi = {10.48415/2021/fhw5-x128}, pages = {105 -- 111}, year = {2021}, language = {en} } @article{SchuetzWeissbeckerHummeletal.1997, author = {Sch{\"u}tz, S. and Weißbecker, B. and Hummel, Hans E. and Sch{\"o}ning, Michael Josef and Riemer, A. and Kordos, P. and L{\"u}th, H.}, title = {Field effect transistor-insect antenna junction}, series = {Naturwissenschaften}, volume = {84}, journal = {Naturwissenschaften}, issn = {1432-1904}, pages = {86 -- 88}, year = {1997}, language = {en} } @article{McArdellBarteltKowalski2007, author = {McArdell, Brian W. and Bartelt, Perry and Kowalski, Julia}, title = {Field observations of basal forces and fluid pore pressure in a debris flow}, series = {Geophysical Research Letters (GRL)}, volume = {34}, journal = {Geophysical Research Letters (GRL)}, number = {7}, isbn = {0094-8276}, year = {2007}, abstract = {Using results from an 8 m2 instrumented force plate we describe field measurements of normal and shear stresses, and fluid pore pressure for a debris flow. The flow depth increased from 0.1 to 1 m within the first 12 s of flow front arrival, remained relatively constant until 100 s, and then gradually decreased to 0.5 m by 600 s. Normal and shear stresses and pore fluid pressure varied in-phase with the flow depth. Calculated bulk densities are ρb = 2000-2250 kg m-3 for the bulk flow and ρf = 1600-1750 kg m-3 for the fluid phase. The ratio of effective normal stress to shear stress yields a Coulomb basal friction angle of ϕ = 26° at the flow front. We did not find a strong correlation between the degree of agitation in the flow, estimated using the signal from a geophone on the force plate, and an assumed dynamic pore fluid pressure. Our data support the idea that excess pore-fluid pressures are long lived in debris flows and therefore contribute to their unusual mobility.}, language = {en} } @article{SchwarzerVieiradaSilvaSchwarzer2011, author = {Schwarzer, Klemens and Vieira da Silva, Maria Eugenia and Schwarzer, Tarik}, title = {Field results in Namibia and Brazil of the new solar desalination system for decentralised drinking water production}, series = {Desalination and water treatment. Vol. 31 (2011), iss. 1-3: selected papers presented at EuroMed 2010 — Desalination for Clean Water and Energy: Cooperation among Mediterranean Countries of Europe and MENA Region, 3-7 October 2010, Tel Aviv, Israel}, journal = {Desalination and water treatment. Vol. 31 (2011), iss. 1-3: selected papers presented at EuroMed 2010 — Desalination for Clean Water and Energy: Cooperation among Mediterranean Countries of Europe and MENA Region, 3-7 October 2010, Tel Aviv, Israel}, pages = {379 -- 386}, year = {2011}, language = {en} } @article{MikuckiSchulerDigeletal.2023, author = {Mikucki, Jill Ann and Schuler, C. G. and Digel, Ilya and Kowalski, Julia and Tuttle, M. J. and Chua, Michelle and Davis, R. and Purcell, Alicia and Ghosh, D. and Francke, G. and Feldmann, Marco and Espe, C. and Heinen, Dirk and Dachwald, Bernd and Clemens, Joachim and Lyons, W. B. and Tulaczyk, S.}, title = {Field-Based planetary protection operations for melt probes: validation of clean access into the blood falls, antarctica, englacial ecosystem}, series = {Astrobiology}, volume = {23}, journal = {Astrobiology}, number = {11}, publisher = {Liebert}, address = {New York, NY}, issn = {1557-8070 (online)}, doi = {10.1089/ast.2021.0102}, pages = {1165 -- 1178}, year = {2023}, abstract = {Subglacial environments on Earth offer important analogs to Ocean World targets in our solar system. These unique microbial ecosystems remain understudied due to the challenges of access through thick glacial ice (tens to hundreds of meters). Additionally, sub-ice collections must be conducted in a clean manner to ensure sample integrity for downstream microbiological and geochemical analyses. We describe the field-based cleaning of a melt probe that was used to collect brine samples from within a glacier conduit at Blood Falls, Antarctica, for geomicrobiological studies. We used a thermoelectric melting probe called the IceMole that was designed to be minimally invasive in that the logistical requirements in support of drilling operations were small and the probe could be cleaned, even in a remote field setting, so as to minimize potential contamination. In our study, the exterior bioburden on the IceMole was reduced to levels measured in most clean rooms, and below that of the ice surrounding our sampling target. Potential microbial contaminants were identified during the cleaning process; however, very few were detected in the final englacial sample collected with the IceMole and were present in extremely low abundances (∼0.063\% of 16S rRNA gene amplicon sequences). This cleaning protocol can help minimize contamination when working in remote field locations, support microbiological sampling of terrestrial subglacial environments using melting probes, and help inform planetary protection challenges for Ocean World analog mission concepts.}, language = {en} }