@article{DemmerChowdhurySelmeretal.2017, author = {Demmer, Julius K. and Chowdhury, Nilanjan Pal and Selmer, Thorsten and Ermler, Ulrich and Buckel, Wolfgang}, title = {The semiquinone swing in the bifurcating electron transferring flavoprotein/butyryl-CoA dehydrogenase complex from Clostridium difficile}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {1}, issn = {2041-1723}, doi = {10.1038/s41467-017-01746-3}, pages = {1 -- 10}, year = {2017}, language = {en} } @article{BaumannLancelotBrandinietal.1994, author = {Baumann, Marcus and Lancelot, C. and Brandini, F. and Sakshaug, E.}, title = {The taxonomic identity of the cosmopolitan prymnesiophyte Phaeocystis, a morphological and ecophysiological approach / Baumann, M.E.M. ; Lancelot, C. ; Brandini, F. ; Sakshaug, E. ; John M.}, series = {Journal of Marine Systems. 5 (1994), H. 1}, journal = {Journal of Marine Systems. 5 (1994), H. 1}, isbn = {0924-7963}, pages = {5 -- 22}, year = {1994}, language = {en} } @article{BodeSchlakeIberetal.2000, author = {Bode, J{\"u}rgen and Schlake, Thomas and Iber, Michaela and Sch{\"u}beler, Dirk and Seibler, Jost and Snezhkov, Evgeney and Nikolaev, Lev}, title = {The transgeneticist's toolbox: novel methods for the targeted modification of eukaryotic genomes}, series = {Biological Chemistry}, volume = {381}, journal = {Biological Chemistry}, number = {9-10}, issn = {1431-6730}, doi = {10.1515/BC.2000.103}, pages = {801 -- 813}, year = {2000}, language = {en} } @article{GuoMiyamotoWagneretal.2014, author = {Guo, Yuanyuan and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Theoretical study and simulation of light-addressable potentiometric sensors}, series = {Physica status solidi (A) : applications and materials}, volume = {211}, journal = {Physica status solidi (A) : applications and materials}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0031-8965}, doi = {10.1002/pssa.201330354}, pages = {1467 -- 1472}, year = {2014}, abstract = {The light-addressable potentiometric sensor (LAPS) is a semiconductor-based potentiometric sensor using a light probe with an ability of detecting the concentration of biochemical species in a spatially resolved manner. As an important biomedical sensor, research has been conducted to improve its performance, for instance, to realize high-speed measurement. In this work, the idea of facilitating the device-level simulation, instead of using an equivalent-circuit model, is presented for detailed analysis and optimization of the performance of the LAPS. Both carrier distribution and photocurrent response have been simulated to provide new insight into both amplitude-mode and phase-mode operations of the LAPS. Various device parameters can be examined to effectively design and optimize the LAPS structures and setups for enhanced performance.}, language = {en} } @article{MatoniBerndt1980, author = {Matoni, Georg and Berndt, Heinz}, title = {Thermal synthesis of the optical pure pentapeptide derivative Z-(L)-Ala-(L)-Phe-Gly-(L)-Phe-Gly-OMe}, series = {Tetrahedron letters}, volume = {21}, journal = {Tetrahedron letters}, number = {1}, issn = {0040-4039}, doi = {10.1016/S0040-4039(00)93618-9}, pages = {37 -- 40}, year = {1980}, language = {en} } @article{FeuerriegelStahlberg1994, author = {Feuerriegel, Uwe and Stahlberg, R.}, title = {Thermoselect - Energie- und Rohstoffgewinnung: Teil 1. Verfahrensgrundlagen zur unterbrechungslosen Verwertung von Restabf{\"a}llen. Stahlberg, R. ; Feuerriegel, U.}, series = {Chemische Technik . 46 (1994), H. 5}, journal = {Chemische Technik . 46 (1994), H. 5}, isbn = {0045-6519}, pages = {257 -- 266}, year = {1994}, language = {en} } @article{Mang2004, author = {Mang, Thomas}, title = {Thermosensitive Magnetic Nanoparticles for Bioanalytical and Therapeutical Applications}, series = {Biomedizinische Technik = Biomedical Engineering. 49 (2004), H. 2}, journal = {Biomedizinische Technik = Biomedical Engineering. 49 (2004), H. 2}, isbn = {0013-5585}, pages = {1006 -- 1007}, year = {2004}, language = {en} } @article{ImmelGrothHuhnetal.2011, author = {Immel, Timo A. and Groth, Ulrich and Huhn, Thomas and {\"O}hlschl{\"a}ger, Peter}, title = {Titanium salan complexes displays strong antitumor properties in vitro and in vivo in mice}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {3}, publisher = {Plos}, address = {San Francisco, California, US}, doi = {10.1371/journal.pone.0017869}, pages = {e17869}, year = {2011}, abstract = {The anticancer activity of titanium complexes has been known since the groundbreaking studies of K{\"o}pf and K{\"o}pf-Maier on titanocen dichloride. Unfortunately, possibly due to their fast hydrolysis, derivatives of titanocen dichloride failed in clinical studies. Recently, the new family of titanium salan complexes containing tetradentate ONNO ligands with anti-cancer properties has been discovered. These salan complexes are much more stabile in aqueous media. In this study we describe the biological activity of two titanium salan complexes in a mouse model of cervical cancer. High efficiency of this promising complex family was demonstrated for the first time in vivo. From these data we conclude that titanium salan complexes display very strong antitumor properties exhibiting only minor side effects. Our results may influence the chemotherapy with metallo therapeutics in the future.}, language = {en} } @article{RoehlenPilasDahmenetal.2018, author = {R{\"o}hlen, Desiree and Pilas, Johanna and Dahmen, Markus and Keusgen, Michael and Selmer, Thorsten and Sch{\"o}ning, Michael Josef}, title = {Toward a Hybrid Biosensor System for Analysis of Organic and Volatile Fatty Acids in Fermentation Processes}, series = {Frontiers in Chemistry}, journal = {Frontiers in Chemistry}, number = {6}, publisher = {Frontiers}, address = {Lausanne}, doi = {10.3389/fchem.2018.00284}, pages = {Artikel 284}, year = {2018}, abstract = {Monitoring of organic acids (OA) and volatile fatty acids (VFA) is crucial for the control of anaerobic digestion. In case of unstable process conditions, an accumulation of these intermediates occurs. In the present work, two different enzyme-based biosensor arrays are combined and presented for facile electrochemical determination of several process-relevant analytes. Each biosensor utilizes a platinum sensor chip (14 × 14 mm²) with five individual working electrodes. The OA biosensor enables simultaneous measurement of ethanol, formate, d- and l-lactate, based on a bi-enzymatic detection principle. The second VFA biosensor provides an amperometric platform for quantification of acetate and propionate, mediated by oxidation of hydrogen peroxide. The cross-sensitivity of both biosensors toward potential interferents, typically present in fermentation samples, was investigated. The potential for practical application in complex media was successfully demonstrated in spiked sludge samples collected from three different biogas plants. Thereby, the results obtained by both of the biosensors were in good agreement to the applied reference measurements by photometry and gas chromatography, respectively. The proposed hybrid biosensor system was also used for long-term monitoring of a lab-scale biogas reactor (0.01 m³) for a period of 2 months. In combination with typically monitored parameters, such as gas quality, pH and FOS/TAC (volatile organic acids/total anorganic carbonate), the amperometric measurements of OA and VFA concentration could enhance the understanding of ongoing fermentation processes.}, language = {en} } @article{TakenagaBiselliSchnitzleretal.2014, author = {Takenaga, Shoko and Biselli, Manfred and Schnitzler, Thomas and {\"O}hlschl{\"a}ger, Peter and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Toward multi-analyte bioarray sensors: LAPS-based on-chip determination of a Michaelis-Menten-like kinetics for cell culturing}, series = {Physica status solidi A : Applications and materials science}, volume = {211}, journal = {Physica status solidi A : Applications and materials science}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X (E); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print)}, doi = {10.1002/pssa.201330464}, pages = {1410 -- 1415}, year = {2014}, abstract = {The metabolic activity of Chinese hamster ovary (CHO) cells was observed using a light-addressable potentiometric sensor (LAPS). The dependency toward different glucose concentrations (17-200 mM) follows a Michaelis-Menten kinetics trajectory with Kₘ = 32.8 mM, and the obtained Kₘ value in this experiment was compared with that found in literature. In addition, the pH shift induced by glucose metabolism of tumor cells transfected with the HPV-16 genome (C3 cells) was successfully observed. These results indicate the possibility to determine the tumor cells metabolism with a LAPS-based measurement device.}, language = {en} }