@inproceedings{SherelkhanAlibekova2024, author = {Sherelkhan, Dinara and Alibekova, Alina}, title = {EEM spectroscopy characterization of humic substances of biomedical importance}, series = {YRA MedTech Symposium (2024)}, booktitle = {YRA MedTech Symposium (2024)}, editor = {Digel, Ilya and Staat, Manfred and Trzewik, J{\"u}rgen and Sielemann, Stefanie and Erni, Daniel and Zylka, Waldemar}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-65-3}, doi = {10.17185/duepublico/81475}, pages = {31 -- 32}, year = {2024}, abstract = {Humic substances possess distinctive chemical features enabling their use in many advanced applications, including biomedical fields. No chemicals in nature have the same combination of specific chemical and biological properties as humic substances. Traditional medicine and modern research have demonstrated that humic substances from different sources possess immunomodulatory and anti-inflammatory properties, which makes them suitable for the prevention and treatment of chronic dermatoses, allergic rhinitis, atopic dermatitis, and other conditions characterized by inflammatory and allergic responses [1-4]. The use of humic compounds as agentswith antifungal and antiviral properties shows great potential [5-7].}, language = {en} } @article{PogorelovaRogachevAkimbekovetal.2024, author = {Pogorelova, Natalia and Rogachev, Evgeniy and Akimbekov, Nuraly S. and Digel, Ilya}, title = {Effect of dehydration method on the micro- and nanomorphological properties of bacterial cellulose produced by Medusomyces gisevii on different substrates}, series = {Journal of materials science}, volume = {2024}, journal = {Journal of materials science}, publisher = {Springer Science + Business Media}, address = {Dordrecht}, issn = {1573-4803 (Online)}, doi = {10.1007/s10853-024-09596-3}, pages = {13 Seiten}, year = {2024}, abstract = {Many important properties of bacterial cellulose (BC), such as moisture absorption capacity, elasticity and tensile strength, largely depend on its structure. This paper presents a study on the effect of the drying method on BC films produced by Medusomyces gisevii using two different procedures: room temperature drying (RT, (24 ± 2 °C, humidity 65 ± 1\%, dried until a constant weight was reached) and freeze-drying (FD, treated at - 75 °C for 48 h). BC was synthesized using one of two different carbon sources—either glucose or sucrose. Structural differences in the obtained BC films were evaluated using atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction. Macroscopically, the RT samples appeared semi-transparent and smooth, whereas the FD group exhibited an opaque white color and sponge-like structure. SEM examination showed denser packing of fibrils in FD samples while RT-samples displayed smaller average fiber diameter, lower surface roughness and less porosity. AFM confirmed the SEM observations and showed that the FD material exhibited a more branched structure and a higher surface roughness. The samples cultivated in a glucose-containing nutrient medium, generally displayed a straight and ordered shape of fibrils compared to the sucrose-derived BC, characterized by a rougher and wavier structure. The BC films dried under different conditions showed distinctly different crystallinity degrees, whereas the carbon source in the culture medium was found to have a relatively small effect on the BC crystallinity.}, language = {en} } @inproceedings{SchmitzApandiSpillneretal.2024, author = {Schmitz, Annika and Apandi, Shah Eiman Amzar Shah and Spillner, Jan and Hima, Flutura and Behbahani, Mehdi}, title = {Effect of different cannula positions in the pulmonary artery on blood flow and gas exchange using computational fluid dynamics analysis}, series = {YRA MedTech Symposium (2024)}, booktitle = {YRA MedTech Symposium (2024)}, editor = {Digel, Ilya and Staat, Manfred and Trzewik, J{\"u}rgen and Sielemann, Stefanie and Erni, Daniel and Zylka, Waldemar}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-65-3}, doi = {10.17185/duepublico/81475}, pages = {29 -- 30}, year = {2024}, abstract = {Pulmonary arterial cannulation is a common and effective method for percutaneous mechanical circulatory support for concurrent right heart and respiratory failure [1]. However, limited data exists to what effect the positioning of the cannula has on the oxygen perfusion throughout the pulmonary artery (PA). This study aims to evaluate, using computational fluid dynamics (CFD), the effect of different cannula positions in the PA with respect to the oxygenation of the different branching vessels in order for an optimal cannula position to be determined. The four chosen different positions (see Fig. 1) of the cannulas are, in the lower part of the main pulmonary artery (MPA), in the MPA at the junction between the right pulmonary artery (RPA) and the left pulmonary artery (LPA), in the RPA at the first branch of the RPA and in the LPA at the first branch of the LPA.}, language = {en} } @article{WindmuellerSchapsZantisetal.2024, author = {Windm{\"u}ller, Anna and Schaps, Kristian and Zantis, Frederik and Domgans, Anna and Taklu, Bereket Woldegbreal and Yang, Tingting and Tsai, Chih-Long and Schierholz, Roland and Yu, Shicheng and Kungl, Hans and Tempel, Hermann and Dunin-Borkowski, Rafal E. and H{\"u}ning, Felix and Hwang, Bing Joe and Eichel, R{\"u}diger-A.}, title = {Electrochemical activation of LiGaO2: implications for ga-doped garnet solid electrolytes in li-metal batteries}, series = {ACS Applied Materials \& Interfaces}, volume = {16}, journal = {ACS Applied Materials \& Interfaces}, number = {30}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {39181-3919}, doi = {10.1021/acsami.4c03729}, pages = {14 Seiten}, year = {2024}, abstract = {Ga-doped Li7La3Zr2O12 garnet solid electrolytes exhibit the highest Li-ion conductivities among the oxide-type garnet-structured solid electrolytes, but instabilities toward Li metal hamper their practical application. The instabilities have been assigned to direct chemical reactions between LiGaO2 coexisting phases and Li metal by several groups previously. Yet, the understanding of the role of LiGaO2 in the electrochemical cell and its electrochemical properties is still lacking. Here, we are investigating the electrochemical properties of LiGaO2 through electrochemical tests in galvanostatic cells versus Li metal and complementary ex situ studies via confocal Raman microscopy, quantitative phase analysis based on powder X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron energy loss spectroscopy. The results demonstrate considerable and surprising electrochemical activity, with high reversibility. A three-stage reaction mechanism is derived, including reversible electrochemical reactions that lead to the formation of highly electronically conducting products. The results have considerable implications for the use of Ga-doped Li7La3Zr2O12 electrolytes in all-solid-state Li-metal battery applications and raise the need for advanced materials engineering to realize Ga-doped Li7La3Zr2O12for practical use.}, language = {en} } @article{YoshinobuMiyamotoWagneretal.2024, author = {Yoshinobu, Tatsuo and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Field-effect sensors combined with the scanned light pulse technique: from artificial olfactory images to chemical imaging technologies}, series = {Chemosensors}, volume = {12}, journal = {Chemosensors}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors12020020}, pages = {Artikel 20}, year = {2024}, abstract = {The artificial olfactory image was proposed by Lundstr{\"o}m et al. in 1991 as a new strategy for an electronic nose system which generated a two-dimensional mapping to be interpreted as a fingerprint of the detected gas species. The potential distribution generated by the catalytic metals integrated into a semiconductor field-effect structure was read as a photocurrent signal generated by scanning light pulses. The impact of the proposed technology spread beyond gas sensing, inspiring the development of various imaging modalities based on the light addressing of field-effect structures to obtain spatial maps of pH distribution, ions, molecules, and impedance, and these modalities have been applied in both biological and non-biological systems. These light-addressing technologies have been further developed to realize the position control of a faradaic current on the electrode surface for localized electrochemical reactions and amperometric measurements, as well as the actuation of liquids in microfluidic devices.}, language = {en} } @article{TixMollKrafftetal.2024, author = {Tix, Julian and Moll, Fabian and Krafft, Simone and Betsch, Matthias and Tippk{\"o}tter, Nils}, title = {Hydrogen production from enzymatic pretreated organic waste with thermotoga neapolitana}, series = {Energies}, volume = {17}, journal = {Energies}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en17122938}, pages = {20 Seiten}, year = {2024}, abstract = {Biomass from various types of organic waste was tested for possible use in hydrogen production. The composition consisted of lignified samples, green waste, and kitchen scraps such as fruit and vegetable peels and leftover food. For this purpose, the enzymatic pretreatment of organic waste with a combination of five different hydrolytic enzymes (cellulase, amylase, glucoamylase, pectinase and xylase) was investigated to determine its ability to produce hydrogen (H2) with the hydrolyzate produced here. In course, the anaerobic rod-shaped bacterium T. neapolitana was used for H2 production. First, the enzymes were investigated using different substrates in preliminary experiments. Subsequently, hydrolyses were carried out using different types of organic waste. In the hydrolysis carried out here for 48 h, an increase in glucose concentration of 481\% was measured for waste loads containing starch, corresponding to a glucose concentration at the end of hydrolysis of 7.5 g·L-1. In the subsequent set fermentation in serum bottles, a H2 yield of 1.26 mmol H2 was obtained in the overhead space when Terrific Broth Medium with glucose and yeast extract (TBGY medium) was used. When hydrolyzed organic waste was used, even a H2 yield of 1.37 mmol could be achieved in the overhead space. In addition, a dedicated reactor system for the anaerobic fermentation of T. neapolitana to produce H2 was developed. The bioreactor developed here can ferment anaerobically with a very low loss of produced gas. Here, after 24 h, a hydrogen concentration of 83\% could be measured in the overhead space.}, language = {en} } @article{AkimbekovDigelTastambeketal.2024, author = {Akimbekov, Nuraly S. and Digel, Ilya and Tastambek, Kuanysh T. and Kozhahmetova, Marzhan and Sherelkhan, Dinara K. and Tauanov, Zhandos}, title = {Hydrogenotrophic methanogenesis in coal-bearing environments: Methane production, carbon sequestration, and hydrogen availability}, series = {International Journal of Hydrogen Energy}, volume = {52}, journal = {International Journal of Hydrogen Energy}, number = {Part D}, publisher = {Elsevier}, address = {New York}, issn = {1879-3487 (online)}, doi = {10.1016/j.ijhydene.2023.09.223}, pages = {1264 -- 1277}, year = {2024}, abstract = {Methane is a valuable energy source helping to mitigate the growing energy demand worldwide. However, as a potent greenhouse gas, it has also gained additional attention due to its environmental impacts. The biological production of methane is performed primarily hydrogenotrophically from H2 and CO2 by methanogenic archaea. Hydrogenotrophic methanogenesis also represents a great interest with respect to carbon re-cycling and H2 storage. The most significant carbon source, extremely rich in complex organic matter for microbial degradation and biogenic methane production, is coal. Although interest in enhanced microbial coalbed methane production is continuously increasing globally, limited knowledge exists regarding the exact origins of the coalbed methane and the associated microbial communities, including hydrogenotrophic methanogens. Here, we give an overview of hydrogenotrophic methanogens in coal beds and related environments in terms of their energy production mechanisms, unique metabolic pathways, and associated ecological functions.}, language = {en} } @article{ThomaGardiFisheretal.2024, author = {Thoma, Andreas and Gardi, Alessandro and Fisher, Alex and Braun, Carsten}, title = {Improving local path planning for UAV flight in challenging environments by refining cost function weights}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Wien}, issn = {1869-5590 (eISSN)}, doi = {10.1007/s13272-024-00741-x}, pages = {12 Seiten}, year = {2024}, abstract = {Unmanned Aerial Vehicles (UAV) constantly gain in versatility. However, more reliable path planning algorithms are required until full autonomous UAV operation is possible. This work investigates the algorithm 3DVFH* and analyses its dependency on its cost function weights in 2400 environments. The analysis shows that the 3DVFH* can find a suitable path in every environment. However, a particular type of environment requires a specific choice of cost function weights. For minimal failure, probability interdependencies between the weights of the cost function have to be considered. This dependency reduces the number of control parameters and simplifies the usage of the 3DVFH*. Weights for costs associated with vertical evasion (pitch cost) and vicinity to obstacles (obstacle cost) have the highest influence on the failure probability of the local path planner. Environments with mainly very tall buildings (like large American city centres) require a preference for horizontal avoidance manoeuvres (achieved with high pitch cost weights). In contrast, environments with medium-to-low buildings (like European city centres) benefit from vertical avoidance manoeuvres (achieved with low pitch cost weights). The cost of the vicinity to obstacles also plays an essential role and must be chosen adequately for the environment. Choosing these two weights ideal is sufficient to reduce the failure probability below 10\%.}, language = {en} } @article{BertzSchoeningMolinnusetal.2024, author = {Bertz, Morten and Sch{\"o}ning, Michael Josef and Molinnus, Denise and Homma, Takayuki}, title = {Influence of temperature, light, and H₂O₂ concentration on microbial spore inactivation: in-situ Raman spectroscopy combined with optical trapping}, series = {Physica status solidi (a) applications and materials science}, journal = {Physica status solidi (a) applications and materials science}, number = {Early View}, publisher = {Wiley-VCH}, address = {Berlin}, issn = {1862-6319 (Online)}, doi = {10.1002/pssa.202300866}, pages = {8 Seiten}, year = {2024}, abstract = {To gain insight on chemical sterilization processes, the influence of temperature (up to 70 °C), intense green light, and hydrogen peroxide (H₂O₂) concentration (up to 30\% in aqueous solution) on microbial spore inactivation is evaluated by in-situ Raman spectroscopy with an optical trap. Bacillus atrophaeus is utilized as a model organism. Individual spores are isolated and their chemical makeup is monitored under dynamically changing conditions (temperature, light, and H₂O₂ concentration) to mimic industrially relevant process parameters for sterilization in the field of aseptic food processing. While isolated spores in water are highly stable, even at elevated temperatures of 70 °C, exposure to H₂O₂ leads to a loss of spore integrity characterized by the release of the key spore biomarker dipicolinic acid (DPA) in a concentration-dependent manner, which indicates damage to the inner membrane of the spore. Intensive light or heat, both of which accelerate the decomposition of H₂O₂ into reactive oxygen species (ROS), drastically shorten the spore lifetime, suggesting the formation of ROS as a rate-limiting step during sterilization. It is concluded that Raman spectroscopy can deliver mechanistic insight into the mode of action of H₂O₂-based sterilization and reveal the individual contributions of different sterilization methods acting in tandem.}, language = {en} } @book{DrummScheuermannWeidner2024, author = {Drumm, Christian and Scheuermann, Bernd and Weidner, Stefan}, title = {Introduction to SAP S/4HANA® : The official companion book based on model company Global Bike-for learning, teaching, and training}, publisher = {Espresso Tutorials}, address = {Gleichen}, isbn = {9783960122685}, pages = {619 Seiten}, year = {2024}, abstract = {This easy-to-understand introduction to SAP S/4HANA guides you through the central processes in sales, purchasing and procurement, finance, production, and warehouse management using the model company Global Bike. Familiarize yourself with the basics of business administration, the relevant organizational data, master data, and transactional data, as well as a selection of core business processes in SAP. Using practical examples and tutorials, you will soon become an SAP S/4HANA professional! Tutorials and exercises for beginners, advanced users, and experts make it easy for you to practice your new knowledge. The prerequisite for this book is access to an SAP S/4HANA client with Global Bike version 4.1. - Business fundamentals and processes in the SAP system - Sales, purchasing and procurement, production, finance, and warehouse management - Tutorials at different qualification levels, exercises, and recap of case studies - Includes extensive download material for students, lecturers, and professors}, language = {en} }