@inproceedings{FrotscherRaatschenStaat2012, author = {Frotscher, Ralf and Raatschen, Hans-J{\"u}rgen and Staat, Manfred}, title = {Application of an edge-based smoothed finite element method on geometrically non-linear plates of non-linear material}, series = {Proceedings European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012)}, booktitle = {Proceedings European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012)}, editor = {Eberhardsteiner, J.}, year = {2012}, language = {en} } @article{Staat2000, author = {Staat, Manfred}, title = {Basis Reduction for the Shakedown Problem for Bounded Kinematic Hardening Material}, year = {2000}, abstract = {Limit and shakedown analysis are effective methods for assessing the load carrying capacity of a given structure. The elasto-plastic behavior of the structure subjected to loads varying in a given load domain is characterized by the shakedown load factor, defined as the maximum factor which satisfies the sufficient conditions stated in the corresponding static shakedown theorem. The finite element dicretization of the problem may lead to very large convex optimization. For the effective solution a basis reduction method has been developed that makes use of the special problem structure for perfectly plastic material. The paper proposes a modified basis reduction method for direct application to the two-surface plasticity model of bounded kinematic hardening material. The considered numerical examples show an enlargement of the load carrying capacity due to bounded hardening.}, subject = {Finite-Elemente-Methode}, language = {en} } @incollection{StaatHeitzer2003, author = {Staat, Manfred and Heitzer, M.}, title = {Basis reduction technique for limit and shakedown problems}, series = {Numerical Methods for Limit and Shakedown Analysis. Deterministic and Probabilistic Approach. NIC Series Vol. 15 / Ed. by Staat, M.; Heitzer, M.}, booktitle = {Numerical Methods for Limit and Shakedown Analysis. Deterministic and Probabilistic Approach. NIC Series Vol. 15 / Ed. by Staat, M.; Heitzer, M.}, publisher = {John von Neumann Institute for Computing (NIC)}, address = {J{\"u}lich}, isbn = {3-00-010001-6}, url = {http://nbn-resolving.de/urn:nbn:de:0001-2018112115}, pages = {1 -- 55}, year = {2003}, language = {en} } @misc{StaatHorbachGatzweiler2019, author = {Staat, Manfred and Horbach, Andreas and Gatzweiler, Karl-Heinz}, title = {Biaxiales Materialpr{\"u}fsystem und Verfahren zu dessen Anwendung}, year = {2019}, abstract = {System und Verfahren zur Durchf{\"u}hrung von Messungen biaxialer und kreuzf{\"o}rmiger Zugversuche, wobei ein Weg oder eine Kraft auf eine Materialprobe {\"u}ber mindestens zwei Nadelarme mit Nadeln geleitet wird, die in einem Geh{\"a}use gelagert sind, wobei die Arme und/oder Nadelarme f{\"u}r eine ungehinderte Querkontraktion bei gleichm{\"a}ßiger Lasteinleitung um eine Achse drehbar gelagert und seitlich auslenkbar sind.}, language = {de} } @article{HorbachStaatPerezVianaetal.2020, author = {Horbach, Andreas and Staat, Manfred and Perez-Viana, Daniel and Simmen, Hans-Peter and Neuhaus, Valentin and Pape, Hans-Christoph and Prescher, Andreas and Ciritsis, Bernhard}, title = {Biomechanical in vitro examination of a standardized low-volume tubular femoroplasty}, series = {Clinical Biomechanics}, volume = {80}, journal = {Clinical Biomechanics}, number = {Art. 105104}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.clinbiomech.2020.105104}, year = {2020}, abstract = {Background Osteoporosis is associated with the risk of fractures near the hip. Age and comorbidities increase the perioperative risk. Due to the ageing population, fracture of the proximal femur also proves to be a socio-economic problem. Preventive surgical measures have hardly been used so far. Methods 10 pairs of human femora from fresh cadavers were divided into control and low-volume femoroplasty groups and subjected to a Hayes fall-loading fracture test. The results of the respective localization and classification of the fracture site, the Singh index determined by computed tomography (CT) examination and the parameters in terms of fracture force, work to fracture and stiffness were evaluated statistically and with the finite element method. In addition, a finite element parametric study with different position angles and variants of the tubular geometry of the femoroplasty was performed. Findings Compared to the control group, the work to fracture could be increased by 33.2\%. The fracture force increased by 19.9\%. The used technique and instrumentation proved to be standardized and reproducible with an average poly(methyl methacrylate) volume of 10.5 ml. The parametric study showed the best results for the selected angle and geometry. Interpretation The cadaver studies demonstrated the biomechanical efficacy of the low-volume tubular femoroplasty. The numerical calculations confirmed the optimal choice of positioning as well as the inner and outer diameter of the tube in this setting. The standardized minimally invasive technique with the instruments developed for it could be used in further comparative studies to confirm the measured biomechanical results.}, language = {en} } @inproceedings{KahmannUschokWegmannetal.2018, author = {Kahmann, Stephanie Lucina and Uschok, Stephan and Wegmann, Kilian and M{\"u}ller, Lars-P. and Staat, Manfred}, title = {Biomechanical multibody model with refined kinematics of the elbow}, series = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, booktitle = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, pages = {11 Seiten}, year = {2018}, abstract = {The overall objective of this study is to develop a new external fixator, which closely maps the native kinematics of the elbow to decrease the joint force resulting in reduced rehabilitation time and pain. An experimental setup was designed to determine the native kinematics of the elbow during flexion of cadaveric arms. As a preliminary study, data from literature was used to modify a published biomechanical model for the calculation of the joint and muscle forces. They were compared to the original model and the effect of the kinematic refinement was evaluated. Furthermore, the obtained muscle forces were determined in order to apply them in the experimental setup. The joint forces in the modified model differed slightly from the forces in the original model. The muscle force curves changed particularly for small flexion angles but their magnitude for larger angles was consistent.}, language = {en} } @inproceedings{JabbariBhattaraiAndingetal.2017, author = {Jabbari, Medisa and Bhattarai, Aroj and Anding, Ralf and Staat, Manfred}, title = {Biomechanical simulation of different prosthetic meshes for repairing uterine/vaginal vault prolapse}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {118 -- 119}, year = {2017}, language = {en} } @inproceedings{BhattaraiFrotscherStaat2015, author = {Bhattarai, Aroj and Frotscher, Ralf and Staat, Manfred}, title = {Biomechanical study of the female pelvic floor dysfunction using the finite element method}, series = {Conference proceedings of the YIC GACM 2015 : 3rd ECCOMAS Young Investigators Conference and 6th GACM Colloquium on Computational Mechanics , Aachen , Germany, 20.07.2015 - 23.07.2015 / ed.: Stefanie Elgeti ; Jaan-Willem Simon}, booktitle = {Conference proceedings of the YIC GACM 2015 : 3rd ECCOMAS Young Investigators Conference and 6th GACM Colloquium on Computational Mechanics , Aachen , Germany, 20.07.2015 - 23.07.2015 / ed.: Stefanie Elgeti ; Jaan-Willem Simon}, publisher = {RWTH Aachen University}, address = {Aachen}, organization = {ECCOMAS Young Investigators Conference <3, 2015, Aachen>}, pages = {1 -- 4}, year = {2015}, language = {en} } @inproceedings{TranStaatKreissig2007, author = {Tran, Thanh Ngoc and Staat, Manfred and Kreißig, R.}, title = {Calculation of load carrying capacity of shell structures with elasto-plastic material by direct methods}, year = {2007}, abstract = {Proceedings of the International Conference on Material Theory and Nonlinear Dynamics. MatDyn. Hanoi, Vietnam, Sept. 24-26, 2007, 8 p. In this paper, a method is introduced to determine the limit load of general shells using the finite element method. The method is based on an upper bound limit and shakedown analysis with elastic-perfectly plastic material model. A non-linear constrained optimisation problem is solved by using Newton's method in conjunction with a penalty method and the Lagrangean dual method. Numerical investigation of a pipe bend subjected to bending moments proves the effectiveness of the algorithm.}, subject = {Finite-Elemente-Methode}, language = {en} } @inproceedings{BirgelLeschingerWegmannetal.2017, author = {Birgel, Stefan and Leschinger, Tim and Wegmann, Kilian and Staat, Manfred}, title = {Calculation of muscle forces and joint reaction loads in shoulder area via an OpenSim based computer calculation}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {116 -- 117}, year = {2017}, language = {en} }